

East Hants Corridor Area Traffic Study

Nova Scotia Department of Public Works

A Travel Demand Planning Study

Final Report

Prepared by: Prepared for:

GRIFFIN transportation group inc.

30 Bonny View Drive Fall River, NS B2T 1R2 www.griffininc.ca **NS Dept. of Public Works**

March 2024

March 28, 2024

Mr. Mark Brace, P.Eng. Nova Scotia Dept. of Public Works 171 Oakmount Drive Bedford, NS B4A 4J3

RE: East Hants Corridor Area Traffic Study

Dear Mr. Brace:

The GRIFFIN transportation group inc. is pleased to present the results of the enclosed travel demand study for the growing communities within the corridor area of the Municipality of East Hants (MEH), along Highway 102. The findings and recommendations flowing from the study analyses provide a long-term strategy to identify when and where roadway capacity will be needed to accommodate the planned population and employment growth.

Our analysis results suggest the existing road network will begin to reach capacity in the vicinity of the 2043 planning horizon- particularly along Trunk 2 and in the vicinity of the Exit 8 and Exit 8A interchanges. To accommodate the expected and continued growth beyond the 2043 planning horizon, the study area roadway network will require significant capacity upgrades. It is recommended that the preferred option to add capacity is to install a new Highway 102 interchange in the northern area of Lantz and planning efforts associated with this new facility should begin in the short to medium-term. This will provide sufficient time for the necessary multidisciplinary studies to be completed and necessary rights-of-way to be preserved.

The successful implementation of the enclosed roadway infrastructure strategy and land use planning directives will require coordinated actions between the Nova Scotia Department of Public Works and the Planning Departments of MEH and HRM. This will ensure that appropriate land use planning policies are established to manage future growth in an efficient manner, particularly from a mobility demand perspective.

It has been a pleasure working with the project steering committee in completing this study. Feel free to contact the undersigned anytime to further discuss the details of this project.

J. COPELAND

Yours truly,

James J. Copeland, P.Eng., RSP₁

Managing Principal – Traffic and Road Safety Engineer

GRIFFIN transportation group inc.

© GRIFFIN transportation group inc.

This document and the information contained within has been prepared exclusively for the Client identified on the cover of this report for the purpose for which it has been prepared. The GRIFFIN transportation group inc. undertakes no duty to or accepts any responsibility to any third party who may rely upon this document.

This document may not be used for any purpose other than that provided in the contract between the Owner/Client and the Engineer nor may any section or element of this document be removed, reproduced, electronically stored or transmitted in any form without the express written consent of the GRIFFIN transportation group inc.

TABLE OF CONTENTS

TA	BLE OF CONTENTS	II
LIS	T OF FIGURES	VI
LIS	ST OF TABLES	VII
EX	ECUTIVE SUMMARY	VIII
Α	Overview	viii
В	Analysis Scenarios	viii
С	Development Growth and Future Traffic Volumes	viii
D	Road Network Analysis	х
E	Comparative Interchange Location Assessment	х
F	Study Conclusions	xi
1.	INTRODUCTION	1
1.1	Background	1
1.2	Study Objectives	1
2.	STUDY OVERVIEW AND ANALYSIS PROCESS	2
2.1	The Study Area Road Network	2
2.2	Land Use Planning Overview	3
2.3	Transportation Mobility Constraints	4
2.4	Overview of Analysis Scenarios	5
2.5	Detailed Analysis Process	5
3.	BASELINE 2023 CONDITIONS	7
3.1	The Study Area Intersections	7

3.2	The 2023 Traffic Data	8
3.2.1	Design Hourly Volumes	8
3.2.2	Gathering Current and Historical Volumes	8
4. FU	UTURE COMMUNITY GROWTH	10
4.1	Overview	10
	Changes in Population and Residential Units	10
4.2.1		10
4.2.2	, 3	10
4.2.3	More Recent Population Forecasts	11
4.3	A More Detailed Look at Method 2 – MEH Development Applications	12
4.3.1		12
4.3.2		12
4.3.3	MEH Residential Growth Outside the SCC GMA	14
4.4	Residential Growth - HRM	14
4.5	Summary of Residential Growth	15
4.6	Business Park and Commercial Growth	17
4.6.1	Business Park Growth	17
4.6.2	Commercial Growth – Village Core Zones	18
4.6.3	Commercial Growth – Highway Commercial	18
4.6.4	Summary of Commercial Growth Forecasts	20
4.7	Development Scenario Summary	21
5. VI	EHICLE TRAFFIC FORECASTS	22
5.1	Overview	22
5.2	A Word on Background Traffic Growth	22
5.3	Summary of Vehicle Trip Generation Sources	23
5.3.1	Trip Generation Overview	23
5.3.2	Vehicle Trip Adjustments	23
5.3.3	Business Park Land Use Growth	24
5.3.4	Highway Commercial Land Use Growth	24
5.4	Distribution of Vehicle Trips	25
5.4.1	Overview	25
5.4.2	New Residential Trip Distribution	25
5.4.3	New Business Park Trip Distribution	28
5.4.4	New Highway Commercial Trip Distribution	28

5.5	Iterative Traffic Assignment Process	28
5.5	5.1 Overview	28
5.5	7.2 Traffic Assignment Summary	30
6.]	NETWORK ANALYSIS AT 2033 AND 2043 - OPTION 1 LAYOUT	31
6.1	Future Intersection Analysis Results	31
6.1	1 Overview	31
6.1	2 Traffic Signal Warrant Analysis	31
6.1	3 Auxiliary Turn Lane Warrants	32
6.1	.4 Intersection Operational Analysis	33
6.2	Summary of Infrastructure Needs – Option 1 Road Layout	34
6.2	2.1 2043 Intersection Upgrades	34
6.2	2.2 Additional 2043 Road Link Considerations	44
6.3	A Word on the Cost Estimates	45
7.]	NEW INTERCHANGE LOCATION ASSESSMENT	46
7.1	Overview	46
7.2	Location Considerations	46
7.3	Evaluation Criteria Descriptions	47
7.3	3.1 Overview	47
7.3	3.2 Transportation Demand	47
7.3	<u> </u>	47
7.3	·	48
7.3		48
7.3	2.6 Socio-Economic	48
7.4	Scoring Methodology	48
7.5	Summary of Assessment Results	49
7.6	Conceptual Layout Considerations	50
7.7	Description of the Preferred Interchange Location	50
7.7	7.1 Highway 102 Interchange Spacing	50
7.7	7.2 Interchange Configuration	50
7.7	7.3 Connector Road Description	52
7.7	7.2 Additional Development Opportunities	52
7.8	Caveats	53

8. NET	TWORK ANALYSIS – OPTION 2 LAYOUT	54
8.1 O	verview	54
8.2 Q	ualitative Assessment of the Unconstrained Growth Scenario	54
8.3 No	ew Interchange Connection Lane Configurations	55
9. CON	NCLUSIONS AND RECOMMENDATIONS	57
9.1 Co	oncluding Thoughts	57
9.1.1	Overview	57
9.1.2	New Growth Estimates	57
9.1.3	Road Capacity Conclusions	57
9.1.4	New Interchange and Connector Road	58
9.2 Re	ecommendations	59
Appendix	x I – RFP Document	
Appendix	x II – Future Settlement Pattern Summary	
Appendix	x III – Peak Hour Traffic Volume Diagrams	
Appendix	x IV – TAC Traffic Signal Warrant Results	

Appendix V – Auxiliary Turn Lane Assessment Results

Appendix VI – Peak Hour Intersection Capacity Reports

Appendix VII – Roadway Infrastructure Concept Diagrams

Appendix VIII – Interchange Location Assessment Notes

Appendix IX – Class D Road Infrastructure Cost Estimates

LIST OF FIGURES

Figure 1: Study Area Road Network	2
Figure 2: Study Area and MEH Special Planning Areas	3
Figure 3: The Detailed Analysis Approach	6
Figure 4: Study Area Intersection Locations	7
Figure 5: Previous East Hants Population Forecasts (2011-2031)	11
Figure 6: Study Area Residential Unit Forecast by Community – 2023 to 2033	16
Figure 7: Study Area Residential Unit Forecast by Community – 2023 to 2043	16
Figure 8: Study Area Residential Unit Forecast by Community – 2023 to Unconstrained	17
Figure 9: MEH Village Core Zones for Future Local Commercial Growth	19
Figure 10: Residential Trip Distribution – Previous 2017 Study	26
Figure 11: Residential Trip Distribution – Current 2023 Study	27
Figure 12: Iterative Traffic Assignment Process Flow Chart	30
Figure 13: 2043 Upgrades – Intersection #2 FH Street A	34
Figure 14: 2043 Upgrades – Intersection #3 Robert Scott Drive	35
Figure 15: 2043 Upgrades – Intersection #4 Wickwire South	35
Figure 16: 2043 Upgrades – Intersections #5 and #6 Frederick Allen and Poplar Drives	36
Figure 17: 2043 Upgrades – Intersections #7 and #8 Route 277-Logan and Church	37
Figure 18: 2043 Upgrades – Intersection #12 Exit 8A	38
Figure 19: 2043 Upgrades – Intersection #13 Trunk 2 and Route 214	39
Figure 20: 2043 Upgrades – Intersection #16 Exit 8 Southbound Ramps	40
Figure 21: 2043 Upgrades – Intersection #17 Park Road	41
Figure 22: 2043 Upgrades – Intersection #18 Elmwood Drive	42
Figure 23: 2043 Upgrades – Intersection #19 Alderney Drive	43
Figure 24: 2043 Upgrades – Intersection #21 Old Enfield Road	44
Figure 25: Preferred New Interchange Location	51
Figure 26: A New North Interchange and Connector Road	52
Figure 27: Intersection #22 Concept Sketch	56
Figure 28: Strategic Concept Plan of Road Network Upgrades	60

LIST OF TABLES

Table 1: Assessment of Growth Scenarios and Road Network Layouts	5
Table 2: Summary of Intersection Traffic Data Sources	9
Table 3: Summary of Mid-block 24-hour Traffic Data Sources	9
Table 4: MEH Comparison of Population Forecast Techniques	12
Table 5: Future Proposed and Planned MEH Residential Units (Net Increase)	13
Table 6: MEH Population Estimates based on All Residential Development Applications	13
Table 7: Proposed Residential Growth Forecasts by 2033 and 2043	15
Table 8: Proposed Business Park and Commercial Growth by 2033 and 2043	20
Table 9: Vehicle Trip Generation Rates by Location and Land Use Type	23
Table 10: Highway Commercial Development by Location	25
Table 11: Trip Distribution – Residential Land Use	27
Table 12: Trip Distribution – Business Park Land Use	28
Table 13: Signal Warrant Analysis Results – Road Option 1	32
Table 14: Summary of Auxiliary Turn Lane Warrants – Unsignalized Intersections Only	33
Table 15: Basic Cost Estimate Assumptions	45
Table 16: Interchange Location Assessment Summary	49
Table 17: Signal Warrant Analysis Results – Road Option 2 Network	54
Table 18: Summary of Future Growth Scenarios	57

EXECUTIVE SUMMARY

A Overview

The Highway 102 / Trunk 2 corridor area of the Municipality of East Hants (MEH) is anticipating significant population and employment growth to occur in the short to medium term time frame. As such, the Nova Scotia Department of Public Works (NSDPW) engaged the GRIFFIN transportation group inc. to carry out a long-term vehicle travel demand study to understand the future roadway network capacity needed to support and service this growth.

Under this context, the overall goal of the travel demand study is to provide technical transportation planning guidance and support to future capital planning decisions, as well as land use planning decisions for the two stakeholder Municipalities.

B Analysis Scenarios

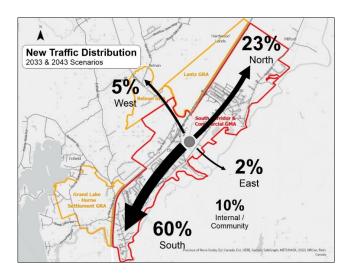
Our study analysis process was developed through discussions with NSDPW as well as information gleaned from the two stakeholder Municipalities. We divided the information into two categories, the transportation network (supply network), and settlement patterns (mobility demand). Our analysis explicitly examined the existing road network (Option 1) at the 2033, and 2043 planning horizons. Based on the findings flowing from this work it was determined that additional road network capacity would be required by the 2043 planning horizon, thus two long-term road layouts were qualitatively examined. A summary of the road network options and settlement scenarios examined in this study is provided in *Table A*.

Table A: Analysis Scenarios Completed for this Study

	Growth Settlement Scenarios			
Road Network Options	2033 Growth	2043 Growth	Unconstrained Growth	
Existing – Option 1	>	~	0	
Existing + North I/C Option 2	0	0	✓	
Existing + South I/C Option 3	0	0	✓	

C Development Growth and Future Traffic Volumes

Future population and employment settlement patterns were established for three planning horizons; 2033, 2043 and a long-term unconstrainted growth scenario. A summary of future growth applied to this study is provided in *Table B*.


Table B: Assumed Future Settlement Patterns

Location		New Growth 2023-2033				Growth strained
Description	Residential (units)	Commercial (ft²)	Residential (units)	Commercial (ft²)	Residential (units)	Commercial (ft²)
MEH SCC GMA	+4,211	+460,693	+5,512	+796,700	+7,070	+1,268,300
MEH GRA's	+187	+25,000	+299	+75,000	+748	+100,000
MEH Rural Areas	+46	0	+74	0	+185	0
HRM	+139	0	+222	0	+555	0
TOTAL	+4,583	+485,693	+6,107	+871,700	+8,558	+1,368,300

In summary, this study assumes an average residential growth rate of about 306 new units/year, over the next 20 years, plus supporting commercial floor space. The forecast settlement patterns contained in *Table B* were then used to quantify the amount of vehicle travel demand added to the road network.

Where possible, GRIFFIN utilized traffic forecasts contained in recent Traffic Impact Study (TIS) reports for the more significant developments in the MEH's serviced Growth Management Area (GMA), including the neighbourhoods in Lantz South, Lantz North, and Elmwood Drive area. For all remaining developments, GRIFFIN calculated the travel demand using published trip generation rates contained in ITE's latest Trip Generation Manual, 11th Edition document. Vehicle trip generation adjustments were made, where appropriate, following ITE best practices and guidelines. It should be noted that no adjustments were made to the new residential trips; however, highway commercial trips were considered to be "pass-by' trips. A more thorough discussion on this topic is provided later in this report. GRIFFIN then utilized recent travel pattern information contained in the MEH's 2021 Socio-Economic report to establish vehicle trip distribution in the corridor area. The distribution of traffic generated by new residential units is illustrated in *Figure A*.

Figure A: Residential Trip Distribution

Once the trip generation calculation process was completed and new vehicle trips were distributed to the future roadway network scenarios the analysis process was carried out.

D Road Network Analysis

GRIFFIN distributed the future traffic, for each planning horizon, using an iterative traffic assignment procedure following industry best practices. The peak hour intersection volumes for all 21 study area intersections were evaluated using a three-step process:

- 1. Traffic Signal Warrant
- 2. Auxiliary Turn Lane Warrant
- 3. Intersection Performance Analysis

Based on the results flowing from this three-step process, GRIFFIN was able to identify the necessary intersection traffic control and lane configuration required to accommodate the future peak hour traffic demand. By the 2043 planning horizon, 14 of the 21 intersections will require some form of infrastructure/capacity upgrades. Concept sketches illustrating the required future lane configurations at the 14 intersections are provided later in this report. In addition, GEMTEC prepared class D cost estimates at each location, and these accompany the concept sketches.

The key conclusions identified from our analysis process included:

- Lantz Area Road System: By 2043, the Trunk 2 corridor will be nearing capacity, and beyond 2043, the Trunk 2 corridor will require a four-lane cross-section from the Lantz Connector Road to around the Robert Scott Drive intersection. Alternatively, a new Highway 102 interchange facility would shift travel patterns and off-set / eliminate the need to widen Trunk 2 through Lantz.
- Elmsdale Area Road System: By 2043, the Exit 8 interchange intersections (i.e. Park Road to Mason Drive) are expected to reach near-capacity conditions particularly at the two closely-spaced signalized intersections on the east side of the interchange. If growth continues beyond 2043 then some additional capacity could be added by upgrading these two intersections to modern roundabouts, along with a new wider bridge structure at Exit 8, but this would have a significant impact on existing businesses and the built environment.
- Enfield Area Road System: By 2043, the existing road system can accommodate the
 forecast vehicle demands, assuming the traffic control at the Trunk 2 / Old Enfield Road
 intersection is adequately upgraded. It is recommended that a modern roundabout be
 installed as it will better manage the north-south queues on Trunk 2 relative to a traffic
 signal. Beyond 2043, and with the uncontrolled and full development potential of the
 Horne Settlement GRA, traffic demand increases along Old Enfield Road will be significant
 and there are long-term operational concerns with the Trunk 2 corridor through Enfield.

E Comparative Interchange Location Assessment

Based on the conclusions of the 2043 planning horizon analyses, it was determined that a new Highway 102 interchange – and connector road to Trunk 2 – could offer a viable alternative to

widening Trunk 2 to four lanes in select locations, assuming growth continues beyond 2043. Therefore, GRIFFIN carried out a planning-level interchange location assessment to identify a preferred location for a new interchange facility.

GRIFFIN identified two candidate locations based on the road capacity constraints expected by the 2043 planning horizon. The first location included a new north interchange in the Lantz area due to the significant increase in serviced residential units planned for this community. The second location was assumed to utilize the Old Enfield Road bridge structure over Highway 102 and help address the potential growth in the unserviced Horne Settlement area. Although the planned number of new units in Lantz is significantly higher than Horne Settlement, the impact on the Trunk 2 corridor is similar.

GRIFFIN carried out a planning level assessment using well-established transportation planning criteria. The results are summarized in *Table C*. It was determined that a new interchange in the Lantz north area would provide a more efficient transportation solution serving the greater good, appears to be consistent with MEH planning policy by encouraging growth and density in a serviced area, and services a greater number of residents.

Table C: Interchange Location Assessment Summary

	New I/C - Candidate Locations	
	Enfield South Lantz North N	
	Old Enfield Road	Lantz-Milford Boundary
A. Transportation Demand		
1 Vehicle travel times / road network delay	В	А
2 Vehicle utilization of new interchange	В	A
3 Ability to manage demand in Trunk 2 corridor	В	Α
B. Geometric Design		
4 I/C spacing along Hwy 102	Α	A
5 Access-controlled Connector Road	В	A
6 Implementation constraints	В	A
C. Land Use / Settlement Impacts		
7 Promotes efficient settlement pattern	В	Α
8 New I/C serves greater population/employment	В	A
D. Environment		
9 Estimate of watercourse/wetland impacts	Α	В
10 Estimate of network fuel consumption	В	А
E. Socio-Economic		
11 Existing property/building impacts	В	А
12 Opportunity to create highway commercial businesses	В	Α
TOTAL SCORE	Mostly B's	Mostly A's
RANK ORDER	2	1

F Study Conclusions

The East Hants travel demand study provides a long-term transportation strategy for both the NSDPW and stakeholder Municipalities. The known, planned, and approved development within the corridor area of the MEH is expected to result in a doubling of the population in the serviced

Growth Management Area (GMA). In addition, the community of Lantz is expected to increase by 4,130 new residential units by 2043. The travel demand generated by the long-term unconstrained full build-out development will require new roadway infrastructure upgrades to function adequately. These upgrades include local intersection widening, a new Highway 102 interchange, and new road links to improve network reliability. A summary of the future strategic road network upgrades is contained in *Figure B*.

new collector road wood system west of 102 new interchange Nine Mile and connector road River Belnan Belnan GRA new collector road South Corridor 8 linking GRA's Commercial GMA Enfield new streetscape along Route 214 **Grand Lake** - Horne tlement GRA Legend: new collector road link in HRM New Interchange by 2043 New Intersection by 2043 New Road by 2043 New intersection beyond 2043 Province of Nova New Road beyond 2043 Conceptual plan for illustrative purposes, not a design - New road alignments are approximate and subject to further review

Figure B: Strategic Concept Plan of Road Network Upgrades

The long-term viability of the road network will not only require the implementation of the strategic road facilities identified in *Figure B*, but will also need to be supported with sound land use planning policy. Therefore, GRIFFIN recommends that the MEH continue to encourage new development within the serviced GMA to increase development density and offer more efficient services to future residents. At the same time, growth controls are recommended in the unserviced aeras of MEH and HRM. As noted in this report, these unserviced areas have limited road access and if development proliferates, it is expected to create over-capacity conditions at key locations like the Exit 8 (Elmsdale) interchange.

1. INTRODUCTION

1.1 Background

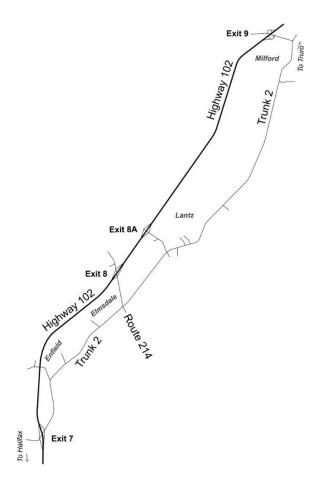
The GRIFFIN transportation group inc. has been retained by the Nova Scotia Department of Public Works (NSDPW) to carry out a long-term travel and mobility study to provide future direction with respect to needed transportation infrastructure in the growing corridor area of the Municipality of East Hants (MEH) and the Halifax Regional Municipality (HRM). In light of recent planning and development information, these two municipalities are anticipating significant growth to occur on lands near the Highway 102 corridor. This study provides valuable technical information that will help plan future road infrastructure upgrades for NSDPW, as well as establish growth management policy at the Municipal level that can support and service the anticipated growth.

1.2 Study Objectives

The overall goal of this mobility and travel demand study is to provide technical transportation planning guidance. This will assist both levels of government in managing future growth by identifying when and where new infrastructure will be required, and preserve rights-of-way in advance of the needed capacity. Based on this goal the study approach executed by the consultant team attempted to fulfill the following project objectives:

- Review the community planning, land use, and development information that was made available and rationalize community settlement patterns. This included the need to understand the changes in both population and employment for the 2033, 2043, and unconstrained full build-out scenarios.
- Develop and execute a vehicle travel demand modeling process based on readily available growth data/information that is appropriate for quantifying travel pattern changes associated with various future development scenarios and roadway network layouts;
- Quantify and assess the road network intersection performance under various development scenarios to understand the capacity constraints, as well as the timing of new infrastructure needed to accommodate the excepted future growth. This included the potential need for a new Highway 102 interchange and a preliminary location assessment;
- Prepare a set of long-term transportation network recommendations for the corridor communities to accommodate the significant growth expected in this area and to ensure adequate mobility services can continue to be provided.

These study objectives were used to develop the study methodology which is discussed in *Section* 2.


2. STUDY OVERVIEW AND ANALYSIS PROCESS

2.1 The Study Area Road Network

The Municipality of East Hants' (MEH) corridor area is predominantly comprised of the growing communities of Enfield, Elmsdale and Lantz; as well as the Dutch Settlement area located in HRM on the east side of the Shubenacadie River. Given the close proximity of these corridor communities to the large employment and shopping areas within the Halifax Regional Municipality (HRM), they have continuously grown into bedroom communities – predominantly comprised of residential land uses with some supporting neighbourhood commercial businesses.

To understand both current and future transportation impacts, NSDPW has requested that the study area road network encompass the majority of future growth in these corridor communities. Therefore, the study area road network was defined as being located along the Trunk 2 corridor – generally from Exit 7 (Enfield) to Exit 9 (Milford). In addition, it was necessary to include the connector roads linking Trunk 2 with the four-lane divided Highway 102 regional travel corridor, such as Route 214 and the new Lantz Connector Road. Our study area road network is illustrated in *Figure 1*.

Figure 1: Study Area Road Network

2.2 Land Use Planning Overview

The majority of roads in our study area are under the jurisdiction of the NSDPW; however, the land use planning and development approval process is managed by two separate Municipalities – the Municipality of East Hants (MEH) and the Halifax Regional Municipality (HRM). Generally, these two jurisdictions are separated by the Shubenacadie River, which essentially parallels the NSDPW's Trunk 2 corridor.

We expect most of the future growth to occur within the MEH and this is based on information provided by the two stakeholder Municipalities. This is logical given the close proximity of these new developments to the already established community services in the MEH (i.e. Enfield, Elmsdale, Lantz) as well as the convenient connectivity to the Highway 102 regional travel corridor. The MEH Planning Department has defined future growth areas within their Municipality and these are contained in *Figure 2*.

Hardwood Nine Mile River Lantz GRA South Corridor Commercial GMA Enfield **Grand Lake** Horne tlement GRA Province of Nova Scotia, Esri Canada, Esri, HERE, Garmin, SafeGraph, METI/NASA, USGS,

Figure 2: Study Area and MEH Special Planning Areas

Source: MEH

As shown in *Figure 2*, the MEH has established specific areas to which planning policies apply. The large area, highlighted in red, is a priority growth area for the MEH. It was previously referred to as the Regional Service Boundary (RSB), but is now referred to as the *South Corridor and Commercial Growth Management Area* (SCC GMA). The SCC GMA includes the communities of Lantz, Elmsdale, and Enfield. The MEH has established a planning vision to encourage the majority of future growth within the SCC GMA, rather than in the unserviced rural areas. Their vision is intended to increase the density of development in this serviced area which will assist the Municipality in delivering more efficient services for these communities.

In addition to the serviced land area within the defined GMA, the MEH has also defined three specific unserviced land areas where additional development could also occur to a lesser extent — as opposed to the proliferation of unplanned rural development. These are referred to as Growth Reserve Areas (GRA) which encompass an area in Horne Settlement, Belnan and Lantz on the west side of Highway 102.

Future development within HRM – south and east of the Shubenacadie River – will need to utilize the local road system connecting through MEH lands. This also means that residents in this area of HRM likely rely on community services offered in MEH (recreation centres, grocery stores, pharmacies, etc.) since these services are not readily available within this area of HRM. Our study has considered some growth increases within this area of HRM as well.

2.3 Transportation Mobility Constraints

The regional movement of people and goods within the corridor area of MEH predominantly occurs via the Highway 102. This divided highway facility is generally aligned in a north-south direction and provides an important transportation link between Halifax and Truro.

Although there are several other minor transportation corridors serving this area of MEH – in addition to Highway 102 – there are also numerous constraints to the movement of people and goods. These constraints include:

- WEST Highway 102: There are a limited number of roads crossing over the Highway 102 including Exit 7 (Enfield), Old Enfield Road, Exit 8 (Elmsdale), Exit 8A (Lantz), and Exit 9 (Milford). Otherwise Highway 102 limits mobility and represents a partial barrier to eastwest travel.
- EAST Shubenacadie River / CN Railway line: There are a limited number of public river crossings in the study area to move across the Shubenacadie River and the parallel CN rail line. Crossings are limited to Elmsdale Road (Elmsdale), Route 277 (Lantz), and Milford Road (Milford). There are no local road crossings in the southern portion (Enfield) of our study area.
- **SOUTH Shubenacadie River / Grand Lake**: There are only two southern options to cross the Shubenacadie River, which occur via Highway 102 and Trunk 2. Residents in the Horne Settlement area only have an option to use Old Enfield Road to access Trunk 2 unless they utilize a very circuitous Route to the north towards Belnan.

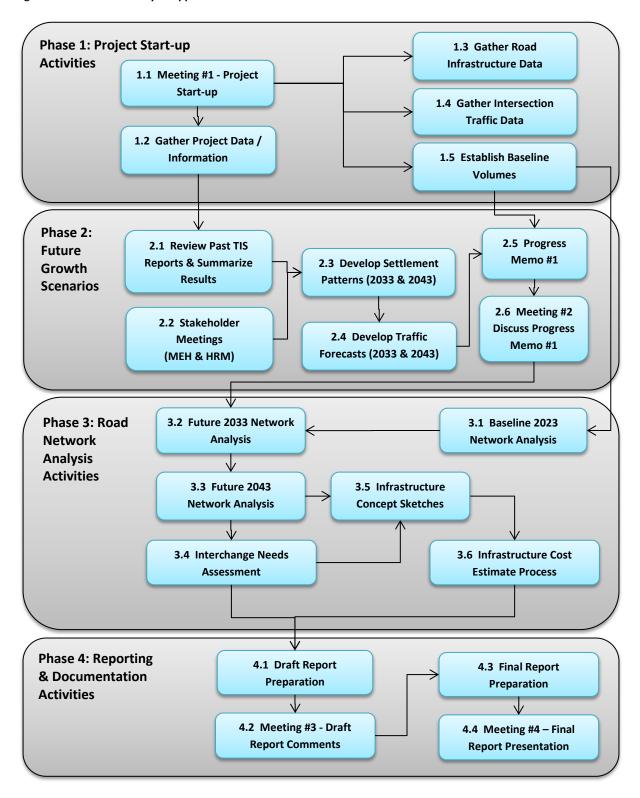
The constrained mobility options in the study area are exacerbated by the limited north-south travel options within HRM – on the east side of the Shubenacadie River. For example, there is no road connection from Oldham Road to Elmsdale Road. Therefore, residents and businesses located east of the Shubenacadie River can only access the regional road network and community services via the limited number of river crossings mentioned above.

In conclusion, the limited mobility options concentrates a significant amount of vehicle demand at a limited number of roadway junctions. These junctions have a finite capacity. Therefore, the future travel demand utilizing these limited number of corridors need to be carefully monitored and managed to ensure they remain viable mobility options now and well into the future.

2.4 Overview of Analysis Scenarios

Our Study analysis process was developed through discussions with NSDPW as well as information gleaned from the two stakeholder Municipalities. We divided the information into two categories, the transportation network (supply network), and settlement patterns (mobility demand). Essentially, our analysis explicitly examined the existing road network (Option 1) at the 2033, and 2043 planning horizons. Based on the findings flowing from this work it was determined that additional road network capacity would be required, thus two future road layouts were qualitatively examined. A summary of the road network options and settlement scenarios are provided in *Table 1*.

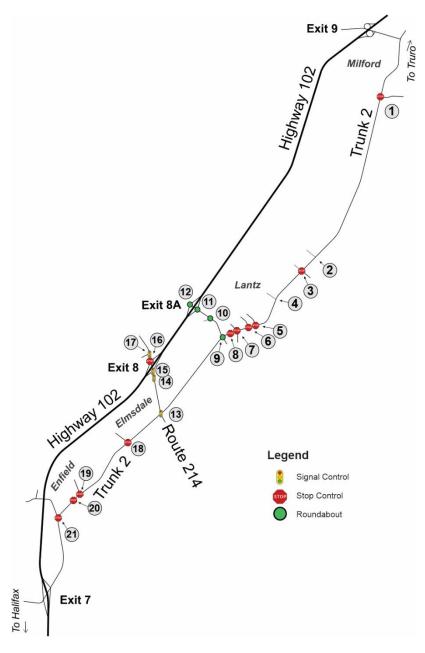
Table 1: Assessment of Growth Scenarios and Road Network Layouts


	Growth Settlement Scenarios			
Road Network Options	2033 Growth	2043 Growth	Unconstrained Growth	
Existing – Option 1	>	✓	0	
Existing + North I/C Option 2	0	0	~	
Existing + South I/C Option 3	0	0	~	

2.5 Detailed Analysis Process

The analysis effort carried out for this study followed industry best practices consistent with completing a transportation planning / travel demand modeling process. It involved tasks such as the collection of available transportation and traffic data, gathering future development and settlement information (i.e. land use planning), forecasting the travel demand under various road network scenarios, identification of a preferred network concept that most efficiently satisfies the expected travel demand and travel desires, and so forth. A detailed stepwise description of our analysis process is illustrated in *Figure 3* below.

Figure 3: The Detailed Analysis Approach



3. BASELINE 2023 CONDITIONS

3.1 The Study Area Intersections

A total of 21 study area intersections were explicitly considered in the detailed evaluations at the 2033 and 2043 planning horizons. Of these, 19 intersections currently exist and accommodate traffic volumes. The other two intersections are planned and will be constructed as part of future residential development in Lantz. The spatial location of the 21 study area intersections are illustrated in *Figure 4*, starting from north to south.

Figure 4: Study Area Intersection Locations

3.2 The 2023 Traffic Data

3.2.1 Design Hourly Volumes

Typically, traffic capacity and operational performance assessments evaluate peak travel times to help understand how well the road network (supply system) can accommodate the peak hour demands. Since the East Hants corridor area is predominantly comprised of residential land uses, along with supporting neighbourhood commercial businesses, it seemed reasonable to assume the weekday AM and PM peak hours would experience the highest overall study area volumes. Therefore, these two peak hours were selected and used in the analysis process.

An additional review was carried out of the historical traffic volumes contained in recently completed traffic impact study reports for the large residential areas in Lantz. These study reports also suggest the highest volumes on the study area roads occur during the weekday morning and afternoon peak periods. Therefore, our data collection effort focused on these time periods and specific weekday peak hours were determined using historical traffic counts that the NSDPW has on file as well as the observed study area traffic volumes gathered by the consultant team.

3.2.2 Gathering Current and Historical Volumes

Before starting the analysis of the future year traffic volumes, there was a need to establish a set of baseline traffic volumes at each of the study area intersections during peak travel times. To facilitate this process GRIFFIN obtained all available historical traffic data throughout the study area – either from the road agencies or gleaned from recently completed traffic study reports. Historical data was also supplemented by GRIFFIN's traffic data collection effort carried out in June 2023. There were no travel restrictions in June 2023 and schools were open and operational at this time. The observed traffic conditions were considered to be reasonable and representative of typical conditions.

A summary of both historical and new intersection traffic data obtained and applied to this study is provided in *Table 1*.

This space intentionally left blank

Table 2: Summary of Intersection Traffic Data Sources

Intersections	Intersection Turning	Supplementary
(north to south)	Movement Count	Historical Data
1. Trunk 2 / Milford Rd	June 16 th , 2023	n/a
2. Trunk 2/ FH Street A	does not exist	n/a
3. Trunk 2 / Robert Scott – Wickwire North	-	2022 TIS report
4. Trunk 2 / Wickwire South	does not exist	n/a
5. Trunk 2 / Frederick Allen Dr	June 15 th , 2023	2020 TIS report
6. Trunk 2 / Poplar Dr	June 14 th , 2023	2020 TIS report
7. Trunk 2 / Route 277-Logan	June 13 th , 2023	2017 I/C report
8. Trunk 2 / Church St	June 13 th , 2023	n/a
9. Trunk 2 / Lantz Connector-Clay Brick Way		2022 TIS report
10. Lantz Connector / Shaw Dr	n/a ^A	2022 TIS report
11. Lantz Connector / Hwy 102 NB Ramps	II/a	2022 TIS report
12. Lantz Connector / Hwy 102 SB Ramps		2022 TIS report
13. Route 214 / Trunk 2	June 27 th , 2023	2021 TIS report
14. Route 214 / Mason Dr (access)	June 22 nd , 2023	2021 TIS report
15. Route 214 / Hwy 102 NB Ramps	June 22 nd , 2023	2021 TIS report
16. Route 214 / Hwy 102 SB Ramps	June 21 st , 2023	2021 TIS report
17. Route 214 / Park Rd-Access	June 20 th , 2023	2017 I/C report
18. Trunk 2 / Elmwood Dr	June 9 th , 2023	2021 TIS report
19. Trunk 2 / Alderney Dr	June 9 th , 2023	n/a
20. Trunk 2 / Shamrock Dr	June 6 th , 2023	n/a
21. Trunk 2 / Old Enfield Rd	June 6 th , 2023	n/a

A – GRIFFIN gathered volumes on Lantz Connector in June 2023. Volumes were lower than previous November 2022 volumes. Therefore, the higher 2022 volumes were applied to this study and no new intersection counts were conducted.

These data were supplemented by mid-block 24-hour traffic counts gathered using automatic traffic recording (ATR) units installed by GRIFFIN. The units were strategically placed at four locations in the study area to both confirm the June 2023 intersection turning movement counts, as well as verify traffic volume counts from recently completed TIS reports.

Table 3: Summary of Mid-block 24-hour Traffic Data Sources

ATR Installation Location	Date of Data
(north to south)	Collection
1. Trunk 2 (Lantz): Immediately north of Poplar Drive	June 13 th -16 th 2023
2. Lantz Connector (Lantz): Immediately west of Trunk 2	June 7 th -9 th 2023
3. Route 214 (Elmsdale): Immediately west of Roulston Drive	June 20 th -23 rd 2023
4. Trunk 2 (Enfield): Immediately north of Shamrock Drive	June 6 th -9 th 2023

A summary of the Existing 2023 peak hour traffic volumes used in the study are contained in *Appendix III*.

4. FUTURE COMMUNITY GROWTH

4.1 Overview

The identification of future growth patterns in a community are an integral component to the transportation planning process due to the direct correlation between population and employment growth and increases in traffic volume demand on the road network. As such, the consultant team obtained future population and employment growth information from the Planning Departments at both the Municipality of East Hants (MEH) and the Halifax Regional Municipality. The planning information allowed the consultant team to better understand the anticipated growth – both in magnitude and rate. Several background reports and documents were provided to the consultant team – the bulk of which were associated with growth in the MEH. The information contained in these documents formed the basis of the growth forecasts used to identify the expected future travel demand for the 2033 and 2043 planning horizons, as well as the long-term unconstrained growth scenario.

The first task in the process was to review the relevant background planning information and technical reports to understand the various growth forecasting methods that could be applied to the transportation planning process. A summary of our findings of this literature review process is provided in the following Sections.

4.2 Changes in Population and Residential Units

4.2.1 Overview

Our initial step of the review process examined the available population information. Understanding changes in population numbers help government agencies plan their infrastructure needs to ensure communities are provided with adequate services. In the case of this study, population is used as one indicator of traffic demand. Research has demonstrated that there is a strong correlation between population increases, increases in the number of residential units, as well as a corresponding increase in the amount of travel throughout a community. Thus, we have used population as a proxy measure for changes in traffic demand. In the next sections we explore some of the available information.

4.2.2 Historical Population Changes

Our population assessment task began with a review of past forecasting results. This step allowed us to gain an understanding of how population in the MEH has changed in recent years, as well as validate the relative accuracy of these past predictions and determine if modifications are required to future forecasting exercises.

One of the more recent population forecasting processes was carried out by the MEH in 2014 and the results of this process were used by GRIFFIN to formulate settlement patterns for their 2017 Lantz interchange location study. These previous MEH forecasts were developed for the then,

future years of 2021 and 2031. A graphical summary of MEH's 2014 population forecasting process is contained in *Figure 4*.

Population Projections for East Hants 28000 27227 27000 26823 26000 25723 Population 25108 25000 24000 23734 23000 23195 Based on Historic Change Based on Exponential Growth Cohort Survival Method 22000 % of HRM Growth Average of All Methods 21000 2011 2016 2021 2026 2031 Year

Figure 5: Previous East Hants Population Forecasts (2011-2031)

Source: Plan East Hants – Community Inventory Report, September 2014, Page 12.

The MEH has also recently reported their 2021 census population to be 24,853. Therefore, we can compare this known population value with previous MEH forecasts contained in *Figure 5* – denoted by the circle in the graph above. The results suggest the actual growth that occurred between 2011 and 2021 was considered above average, and this corresponds with GRIFFIN's previous growth assumptions applied to their 2017 Lantz interchange study. The 2021 census population value also adds confidence to our travel demand forecasting procedure and our understanding of rates of growth in this area of the Province.

4.2.3 More Recent Population Forecasts

In 2021, the MEH recently published their Socio-Economic Study report which provided a more recent update to their growth forecasts and summarizes key community planning information. This document utilized valuable information and metrics contained in the 2021 census data set. Since this planning study is very recent, and utilizes current 2021 census data, it was prudent to use this information in our transportation study as a key resource. Upon examining the 2021 Socio-Economic Study report, GRIFFIN extracted two key population estimates from this document.

The first forecasting process is what GRIFFIN refers to here as METHOD 1, which is based on MEH historical growth trends. As stated in the previous Section this is a reasonably accurate prediction

method that is commonly applied by Municipalities across Canada. The second, and independent approach, is referred to as METHOD 2. The second method was based on the actual development applications that have been submitted to the MEH Planning Department. This information is a more accurate reflection of known development that is likely to occur in the short to medium term. A summary of both population forecasting methods is contained in *Table 4*.

Table 4: MEH Comparison of Population Forecast Techniques

	METHOD 1 Greater Corridor Area		METHOD 2 SCC GMA Only	
Census Year	Population ^A	Percent Change	Population ^B	Percent Change
2021	15,737	-	8,190	-
2026	16,635	5.7%	13,446	64%
2031	17,584	5.7%	17,529	30%
2036	18,587	5.7%	19,275	10%
2041	19,647	5.7%	20,699	7%
20 yr growth ratio	1.25 growth ratio		2.53 growth ratio	

A – MEH forecasts based on historical trends, 2023 Socio-Economic Study.

It is difficult to carry out a direct comparison of the two population forecast methods contained in *Table 4* as they represent slightly different geographic areas. However, the MEH's stated planning goal of trying to encourage increased settlement density within the serviced area of the SCC Growth Management Area (SCC GMA) is clear in METHOD 2 – as indicated by the higher 2.53 growth ratio. Therefore, we anticipate the lions share of future population settlement – and in turn residential units – to occur within the SCC GMA area.

4.3 A More Detailed Look at Method 2 - MEH Development Applications

4.3.1 Overview

GRIFFIN further examined the MEH population forecasting procedures of METHOD 2 discussed above by obtaining details of the development application data from the MEH Planning Department. Understanding the future population growth – measured in residential units – is valuable as it is a valid forecasting process, and is independent of the METHOD 1 forecasting process.

4.3.2 Planned and Approved Development Applications - MEH

The MEH made available the detailed building information associated with future residential development applications that are either at the active application stage, approved by MEH, or at the pending application (i.e. speculative) stage. This information included a list of the individual developments within the greater corridor area – including both the serviced SCC GMA and unserviced GRA's. This information included the proponent name, types of residential units, magnitude of the development, and location. A summary of the proposed and planned residential units across the corridor area of MEH is summarized in *Table 5*.

B – MEH Forecasts based on development applications, 2023 Socio-Economic Study.

Table 5: Future Proposed and Planned MEH Residential Units (Net Increase)

	MEH Sub-Area /	Net New Units	
	Community	By Area	Total Units
Growth Managament	Lantz	+5,456	
Growth Management Areas (GMA)	Elmsdale	+948	+7,070
Aleas (GIVIA)	Enfield	+666	
Growth Reserve Areas	Lantz	0	
(GRA)	Belnan	0	+748
(GRA)	Horne Settlement	+748	
Rural Area	-	+185	+185
	+8,003		

If we focus exclusively on MEH's serviced GMA there are 7,070 residential units planned to be built. Looking more closely, the majority or 5,456 units are planned to occur in Lantz, 948 units in Elmsdale, and 666 units in Enfield. Currently, there are no planned developments within the Belnan GRA but the planned 185 units in the rural area are all located near-by in the rural area of Belnan.

GRIFFIN used this information to examine how these future planned units translate into population increases. A summary of our population estimates for both the entire MEH corridor area and the MEH GMA areas is provided in *Table 6*. It should be noted that the residential unit and population estimates assume a full build-out, or unconstrained growth scenario.

Table 6: MEH Population Estimates based on All Residential Development Applications

	Greater Corridor Area^A	Corridor SCC GMA	
2021 Population	15,737	8,190	
Net Increase - Residential Units	8,003 units	7,070 units	
Persons / Household ^B	2.33	2.33	
Expected Population Increase	18,647	16,473	
Total Future Population	34,384	24,663	

A – Greater corridor area includes the MEH's unserviced GRA's and rural development.

The information in *Table 6* is significant as it represents actual planning applications, and if fully built out, represents more than a doubling of the 2021 census population in the corridor area. It also suggests a three-fold increase in population in the GMA. In conclusion, the planned/approved developments will result in significant increases in the MEH population.

If we compare these major population increases presented above in *Table 6* with the MEH Planning Department's own estimates for their 2041 planning horizon – as documented in their 2021 Socio-economic report – we can see that there will be more than adequate housing stock to meet the MEH's population forecasting numbers. This conclusion also suggests that, for the purposes of this study, it is not reasonable to assume all 8,003 net new units will be occupied by

B – MEH Planning Department uses an average 2.41 persons / household, plus a 3% vacancy rate.

2043, for example. Thus, GRIFFIN carried out a rationalization process to identify reasonable interim planning horizon estimates for this study, at the 2033 and 2043 horizon years. These numbers are presented later in Section 4.4.

4.3.3 MEH Residential Growth Outside the SCC GMA

The MEH's Planning Department indicated there are only two known notable areas of growth outside the serviced SCC GMA. These include the following:

- 1. Horne Settlement GRA: A low-density residential area could potentially develop in the Horne Settlement GRA west of Old Enfield Road. MEH has indicated that a total of 748 unserviced units could be built in this area. However, this is outside the SCC GMA and development in this area would not meet the MEH's desired goal to increase density in their serviced Growth Management Area. GRIFFIN will account for some development in this area, but it will be limited to align with MEH's land use policy.
- 2. Rural Area West of Belnan: A low density residential development comprised of up to 185 units is being planned in Belnan. This development is referred to as Garden Meadows and is located near Royal Oaks Way. This is another unserviced area; however, is outside the adjacent Belnan GRA. Development in this area would not meet the MEH's desired planning goals as it is outside both the defined GMA and GRA. GRIFFIN will account for some development in this area, but again, it will be assumed that some form of rural growth controls would be enacted.

Generally, our study assumes that residential growth outside of the GMA will occur; however, it will be limited in the near-term to align with MEH's planning policy. In order for this to come to fruition we assume in our growth projections that the stakeholder Municipalities will enact some form of growth management policy to limit further proliferation of unserviced units in the rural areas.

4.4 Residential Growth - HRM

GRIFFIN has obtained information regarding residential growth on lands along the east side of the Shubenacadie River, and within the Halifax Regional Municipality (HRM). This is a rural and unserviced area of HRM that has very limited community services and no through road connections to other areas of HRM. The only vehicle access to these properties is via the Trunk 2 corridor, which means drivers will need to cross the Shubenacadie River via one of two available crossings and then travel through the MEH.

There are two known developments in this area that were explicitly considered in our study:

- Old Post Road: The existing Riverdale low-density neighbourhood is being planned to
 include up to 30 additional low-density units. The only vehicle access for these drivers is
 via Oldham Road in Enfield. Thus, increases in traffic on study area roads are expected to
 be focused on the Enfield area and the Exit 7 interchange.
- Old Truro Road: A future 525-unit mobile home neighbourhood is being planned in the Elmsdale Road area of HRM. The only vehicle access for these residents is via Elmsdale

Road-Route 214. Thus, impacts to the study area roads are expected to be focused along the Route 214 corridor and Exit 8 (Elmsdale).

This rural area of HRM could see up to 555 new residential units; however, as discussed in the previous Section we have assumed that only limited number of units will be complete by 2043.

4.5 Summary of Residential Growth

Based on our review of past reports provided by MEH and HRM planning representatives, as well as the key development information presented above, GRIFFIN was able to assemble likely and reasonable settlement patterns for the 2033 and 2043 planning horizons. Our proposed residential growth summary is contained in *Table 7*.

Table 7: Proposed Residential Growth Forecasts by 2033 and 2043

		New Units	New Units	Average Growth
Location Description		2023-2033	2023-2043	(20 years)
MEH SCC GMA	Units - Lantz	+2,829	+4,130	207 units/year
	Units - Elmsdale	+783	+783	39 units/year
	Units - Enfield	+599	+599	30 units/year
MEH GRA's	Units	+187	+299	15 units/year
MEH Rural Areas	Units	+46	+74	4 units/year
HRM	Units	+139	+222	11 units/year
TOTAL		+4,583 units	+6,107 units	306 units/year

In summary, our proposed residential settlement patterns contained in *Table 7* indicates that many of the new units will occur within the serviced SCC GMA - 5,512 new units by 2043. This equates to a yearly increase in the GMA of about 276 units/year and will clearly help to increase the residential density.

GRIFFIN also completed a reasonableness check by reviewing information from an independent forecasting process carried out by MEH Planning Department. They have estimated that approximately 4,930 net new units will be built and occupied in the GMA by the 2041 planning horizon. Although the 2041 horizon year does not exactly align with this study, the year-to-year increase in new units are similar and range between 273 units/year (MEH)¹ to 276 units/year (GRIFFIN)². The findings of our reasonableness check adds confidence to our proposed approach. The rationalized residential growth numbers for this study are spatially allocated by community in *Figures 6, 7 and 8*. It should be noted that the Elmsdale growth numbers include the Belnan GRA and rural areas; and Enfield growth numbers include the Horne Settlement GRA. A more detailed breakdown of residential units, and commercial development by location is provided in the *Appendix II*.

¹ This yearly rate of net new units in the GMA was developed internally by the MEH Planning Department.

² This yearly rate of net new units in the GMA was development by GRIFFIN, as documented in Table 7

Figure 6: Study Area Residential Unit Forecast by Community – 2023 to 2033

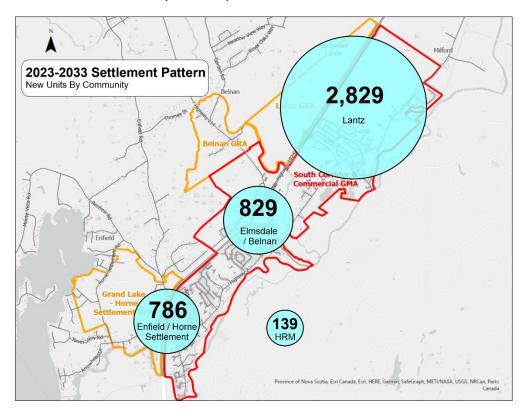
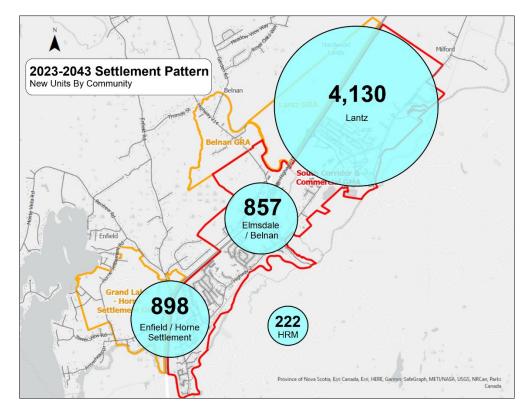



Figure 7: Study Area Residential Unit Forecast by Community – 2023 to 2043

Max. Unconstrained Growth
New Units By Community

5,456

Lantz

+1,326 units
since 2043

Lantz

Lantz

Hondis Grand

1,414

Enfield / Home
Settlement
Sett

Figure 8: Study Area Residential Unit Forecast by Community – 2023 to Unconstrained

4.6 Business Park and Commercial Growth

4.6.1 Business Park Growth

The main business park located within our study area is situated along Park Road, west of Highway 102, in Elmsdale. The park has experienced steady and gradual growth in recent years, and we expect this trend to continue. However, one of the main concerns for this area is the roadway capacity as there is only one vehicle access via Park Road, and the adjacent Exit 8 interchange. Although the recent opening of the new Exit 8A (Lantz) interchange has shifted traffic away from Exit 8 and alleviated some traffic congestion in Elmsdale, it is an area that again could be approaching near-capacity conditions with only minor increases in peak hour volume. Thus, continued growth in the Business Park is expected to result in limited road capacity in the short to medium term.

GRIFFIN examined the available Business Park lands that remain undeveloped and appear to be within the SCC GMA boundary. It was estimated that upwards of 350 acres could potentially be occupied. Despite there being a significant amount of land available to accommodate future growth, GRIFFIN does not expect these lands to fully develop by the 2043 horizon year based on the historical growth trends for this area., along with competition from other Business Parks around the Province.

Initially, GRIFFIN proposed to utilize a similar approach to rationalizing Business Park growth that was applied in their previous 2017 study for this area. However, upon reviewing the previous analysis results, the Park Road intersection began to reach capacity once the Business Park growth reached 500,000 ft² net new growth. With this previous knowledge, GRIFFIN applied the following Business Park growth assumptions to this latest study:

- Assume an average development rate of 2.5 acres/year which approximately equates to about two to three new businesses per year opening in the Business Park. This equates to an approximate growth of:
 - 2033 Horizon: 25 new acres of development,
 - 2043 Horizon: 50 new acres of development
- GRIFFIN also conducted iterative sensitivity assessments of the 2.5 acres/year growth to
 determine the point at which the Park Road corridor and its intersection with Route 214
 reached capacity and can no longer accommodate traffic growth.

This analysis approach provides a practical evaluation of the local road network and will help identify an approximate timeframe for a new second road connection to the Business Park – or the need to identify alternative business park lands.

4.6.2 Commercial Growth – Village Core Zones

There are multiple commercial nodes in the study area currently offering neighbourhood commercial services for residents of the MEH corridor area, as well as HRM residents south of the Shubenacadie River. As the population in the study area continues to increase, there is an expectation that the number of commercial businesses will also increase to meet demand. The MEH Planning Department appears to have been monitoring these needs, and as such, have identified commercial nodes to help facilitate growth of this particular land use type and ensure local residents are offered vital community services well into the future. The MEH commercial nodes are referred to as local Village Core Zones within the SCC GMA. The three defined Village Core Zones include:

- Enfield: concentrated around the Trunk 2 / Old Enfield Road intersection,
- Elmsdale: concentrated along Route 214 (between Highway 102 and Trunk 2) and generally around the Trunk 2 / Route 214 intersection, and
- Lantz: concentrated along Trunk 2, generally between the Lantz Connector Road and Route 277 intersections.

GRIFFIN views these Village Core Zones as smaller human-scale downtown areas for local residents within each community. These areas are conceptually shown in *Figure 9*.

4.6.3 Commercial Growth - Highway Commercial

Through our discussions with MEH, it was apparent that future commercial growth is likely to predominantly occur within MEH, in the following areas:

Belnan GRA outh Corridor Legend MC - Mixed Use Centre Zone VC - Village Core Zone Province of Nova Scotia, Esri Canada, Esri, HERE, Garmin, SafeGraph, GeoTechnologies, I USGS, NRCar

Figure 9: MEH Village Core Zones for Future Local Commercial Growth

Source: MEH

1. Lantz:

- a. New Exit 8A interchange area east of Highway 102: These lands are within the serviced Lantz South development which has been planned to include up to 220,100 ft² of highway commercial space in the southeast quadrant of this interchange. These lands are located within the SCC GMA. An additional 97,000 ft² of commercial space is also planned to occur further north within the Armco and FH Development neighbourhoods.
- b. New Exit 8A interchange area west of Highway 102: These lands are located within the unserviced Lantz GRA lands west of Highway 102, with access via the new Exit 8A

interchange. The magnitude and scale of development in the Lantz GRA is unknown at this time; however, MEH is initiating a planning and servicing study for this area in the near future. GRIFFIN has assumed development in this area to be exclusively highway commercial in nature and growth will be limited to some degree given the fact these lands are currently unserviced, combined with the fact that there is a notable amount of serviced commercial development on the east side of Exit 8A.

2. Elmsdale:

- a. The existing Exit 8 interchange area already accommodates numerous commercial businesses; however, there is some available land in the northwest quadrant with access via the Park road signalized intersection. These lands are owned by Choice Properties and there are no known plans for development to occur; however, GRIFFIN has assumed some additional commercial space on these lands.
- b. Along Route 214, between Highway 102 and Trunk 2, the existing residences have been rezoned for commercial use. As such, we expect this area to gradually convert to a "main street" style streetscape with small-scale low-rise buildings containing shops and services intended to serve local residents. GRIFFIN has assumed some new commercial space in this area.
- 3. *Enfield*: A small amount of new highway commercial space was assumed in Enfield. As discussed in the previous Section, the area around the Trunk 2 / Old Enfield Road intersection has been designated as a Village Core Zone and future commercial growth has been considered in that area.

4.6.4 Summary of Commercial Growth Forecasts

A summary of our proposed growth scenarios for the 2033 and 2043 planning horizons are contained in *Table 8*. As shown, GRIFFIN proposes to include up to 50 acres of new development in the serviced area of the Business Park (or until Park Road reaches capacity). In addition, GRIFFIN has accounted for an assumed highway commercial floor space growth of up to 313,550 ft² across the entire study area.

Table 8: Proposed Business Park and Commercial Growth by 2033 and 2043

		New	New	Average Growth
		2023-2033	2023-2043	(20 years)
Business Park	Elmsdale GMA	+25 acres	+50 acres	2.5 acres / year
Hwy Commercial	Lantz – GMA	79,275 ft ²	158,550 ft ²	7,928 ft ² / year
	Lantz - GRA	25,000 ft ²	75,000 ft ²	3,750 ft ² / year
	Elmsdale GMA – Exit 8	20,000 ft ²	40,000 ft ²	2,000 ft ² / year
	Elmsdale GMA– Rte 214	10,000 ft ²	20,000 ft ²	1,000 ft ² / year
	Enfield GMA	10,000 ft ²	20,000 ft ²	1,000 ft ² / year
TOTAL – Hwy Commercial Floor Space		144,275 ft ²	313,550 ft ²	15,678 ft ² / year

These values applied by GRIFFIN for the 2033 and 2043 planning horizons are below the total commercial space that MEH has already approved within the SCC GMA. This means there is an opportunity for additional commercial space to be added beyond the 2043 planning horizon and this aligns well with our proposed approach associated with the residential growth scenario assumptions presented in the previous section.

4.7 Development Scenario Summary

Based on our review of the available planning and development information, the following growth forecasts were applied to the East Hants Traffic Study:

Residential Land Use:

- Reviewing multiple growth forecasting methods, it appears reasonable to use a housing unit increase of about 306 units/year for the next 20 years out to the 2043 planning horizon. This includes development occurring within the MEH GMA, MEH GRA's, and on adjacent lands within HRM. It equates to a total increase of 6,107 new residential units. Of course, the MEH has approved or soon to be approved 7,070 net new units within their GMA alone, so we expect growth will continue well beyond 2043.
- An increase of 6,107 net new residential units by the 2043 planning horizon is estimated to represent a population increase of about 14,230 new people. The majority of this population about 68% is expected to settle within the community of Lantz and occupy about 4,130 new units by 2043. The remaining 1,977 units are expected to be spread across the other communities in our study area.

Commercial Land Uses:

- Business Park growth along Park Road of up to 50 new acres by the 2043 horizon year. GRIFFIN assumed this equates to 435,600 ft² of new business floor space.
- Highway commercial growth was included in our assessment. As documented in Table 8, a total of 313,550 ft² of floor space was assumed to occur by the 2043 horizon year.

These forecast development numbers were used to quantify the amount future year traffic volumes using the study area roads, which is discussed in the next Section. A detailed breakdown of the future settlement patterns is provided in *Appendix II*.

5. VEHICLE TRAFFIC FORECASTS

5.1 Overview

The expected population and employment growth discussed in the previous Section was used to quantify the number of new vehicle trips added to the road network. Our proposed approach to quantifying the amount of new vehicle traffic added to the study area roads at the future planning horizon years was based on industry best practices and used multiple sources of information.

GRIFFIN started the traffic forecasting step by reviewing the traffic forecasts contained in recently approved/accepted Traffic Impact Study (TIS) reports for the larger developments within the study area, and where possible, used the published site-generated traffic volumes directly from these reports. For all remaining smaller developments, GRIFFIN used published trip generation rates contained in ITE's Trip Generation Manual, 11th Edition document to develop traffic estimates.

As with any trip generation calculation process, the specific land use type can impact the total volumes of vehicles being generated in an area. Therefore, the study area was subdivided into smaller traffic-generating zones that corresponded with the following three land use types:

- Residential: The specific types and numbers of units were gleaned from the development application information, and/or, the available traffic impact study reports. GRIFFIN created a traffic generating site for each known new development location.
- Business Park: Includes an expansion of the MEH business park lands along Park Road and was assumed to be comprised of similar business types that currently exist.
- Highway Commercial: GRIFFIN assumed growth and expansion of the existing mix of businesses in the vicinity of Exit 8, Exit 8A, and within the MEH's designated Village Core Zones along Route 214 and Trunk 2.

Each of these land use types are discussed in more detail in the next Sections.

5.2 A Word on Background Traffic Growth

A background traffic growth rate is typically included in a traffic volume forecasting process to account for general population and employment increases in the vicinity of the study area. This specific task attempts to account for any unknown developments that may occur within the planning horizon. However, the analysis approach being undertaken for this current study examines, in detail, all known development applications in our study area. These include approved future developments, and those active in the application process. Therefore, there are concerns of "double counting" traffic volumes if all known/planned developments are explicitly considered, plus a general traffic growth rate is applied. As such, GRIFFIN has chosen not to use a general background traffic rate to reduce the likelihood of an erroneous compounding traffic forecasting effect.

5.3 Summary of Vehicle Trip Generation Sources

5.3.1 Trip Generation Overview

Where possible, GRIFFIN utilized traffic forecasts contained in recent Traffic Impact Study (TIS) reports for the more significant developments in the SCC GMA, including Lantz South, Lantz North, and Elmwood area to name a few. For all remaining developments, GRIFFIN used published trip generation rates contained in ITE's latest Trip Generation Manual, 11th Edition document.

A summary of the proposed trip generation calculation assumptions for our study is provided in *Table 9*, broken down by sub-area and land use type.

Table 9: Vehicle Trip Generation Rates by Location and Land Use Type

Location / Area	Land Use Description	Trip Generation Source	
MEH – South Corridor	& Commercial Growth Manag	•	
Lantz	Residential	Mix of recent TIS reports (large developments) & ITE Trip gen rates (small developments)	
	Commercial	Use vehicle forecasts from mix of recent TIS reports	
	Residential	Elmwood TIS report & ITE trip gen rates for R2's (ITE LU 215) and low-rise multi-units (ITE LU 220)	
Elmsdale	Commercial	 Exit 8 Area: mix of ITE rates for gas, fast food, etc. Route 214 Corridor: ITE LU 822 	
	Business Park	Business Park (ITE LU 770) using a 20% building coverage	
Enfield	Residential	ITE trip gen rates for R2's (ITE LU 215) and low- rise multi-units (ITE LU 220)	
	Commercial	ITE trip gen rate for LU 822	
MEH – Growth Reserve	e Areas (GRA)		
Lantz	Commercial	• Exit 8A west of Hwy 102: mix of ITE rates for gas, fast food, etc.	
Belnan	-	• n/a ^A	
Horne Settlement	Residential	ITE trip gen rates for R1's (ITE LU 210)	
MEH – Rural Area outs	ide of GMA & GRA's		
Belnan	Residential	ITE trip gen rates for R1's (ITE LU 210)	
HRM – Area southeast	of Shubenacadie River		
HRM	Residential	ITE trip gen rates for R1's (ITE LU 210) and R2's (ITE LU 215)	

 $^{{\}it A-There\ are\ no\ known\ developments\ occurring\ within\ the\ Belnan\ GRA\ at\ this\ time.}$

5.3.2 Vehicle Trip Adjustments

GRIFFIN has followed ITE's best practices for quantifying the number of new vehicle trips. This includes an examination of not only the total vehicle trips generated by future development, but also a breakdown of both new vehicle trips and pass-by trips from traffic already on the network.

Of course, the specific land use type is directly related to the trip type, and GRIFFIN applied the following trip type adjustments:

- Residential: No trip type adjustments were made for this land use and total vehicle trips were considered to be new trips added to the network.
- Business Park: No trip type adjustments were made for this land use type and total vehicle trips were considered to be new trips.
- Highway Commercial: All traffic generated by the highway commercial businesses were assumed to be pass-by trips already traveling on the road network. Therefore, "new" traffic was not added to the road network from outside the study area suggesting that local residents patronize these businesses. Therefore, GRIFFIN accounted for the specific site-generated trips by adding vehicle turns to/from the major roads in the study area. For example, highway commercial businesses establishing at the Exit 8A (Lantz) interchange will attract traffic from Highway 102 and our analysis accounted for the movement of trips between these roads and the businesses.

Again, ITE best practices and guidelines were followed to quantify the future vehicle trips and distribute them to the road network.

5.3.3 Business Park Land Use Growth

Business Park growth is expected to continue into the future and is assumed to expand along the Park Road corridor. However, there is only a finite vehicle capacity offered through its main access point – Park Road and the Exit 8 interchange – and so the amount of actual growth in this area is expected to be constrained to some degree. Given these conditions, a two-step Business Park growth approach was carried out:

- 2023-2033: An increased development rate of 2.5 acres/year, which equates to a total increase of 217,800 ft² of new business park floor space. This was used as the basis for the trip generation calculations.
- 2023-2043: An increased development rate of 2.5 acres/year, which equates to a total increase of 435,600 ft² of new business park floor space. This was used as the basis for the trip generation calculations.

As noted in *Table 9*, GRIFFIN determined it was appropriate to apply the ITE trip rate for land use code 770 (Business Park). GRIFFIN has successfully applied this particular LUC 770 trip rate to several other Business and Industrial Park transportation studies in Nova Scotia. It was assumed that an average 20% of the land area would be covered by single-floor buildings.

5.3.4 Highway Commercial Land Use Growth

For the purposes of this study, Highway Commercial development will be focused on the businesses in the vicinity of the Exit 8 (Elmsdale) interchange, the Exit 8A (Lantz) interchange, and the Village Core Zones. Typical highway commercial businesses could include a mix of gas stations, smaller retail shops, grocery stores, etc. *Table 10* provides the assumed amount of highway commercial development used as the basis for the trip generation calculations.

Table 10: Highway Commercial Development by Location

Location	New Floor Area	New Floor Area	
	2033	2043	
Exit 8A (Lantz) – west side	25,000	75,000	
Exit 8 (Elmsdale) – west side	20,000	40,000	
Route 214 – Hwy 102 to Trunk 2	10,000	20,000	
Trunk 2 Enfield	10,000	20,000	
TOTAL	65,000	155,000	

This study assumes no new vehicle trips will be generated from outside of the study area that are associated with the highway commercial development; however, GRIFFIN assumed that all vehicle demand generated by the highway commercial businesses will originate from the existing/new residential traffic as well as traffic already traveling on the major corridors – such as Highway 102. Therefore, the commercial trips were considered to be "pass-by" trips and their impact was only accounted for at the appropriate intersections serving the developments, following ITE best practices.

5.4 Distribution of Vehicle Trips

5.4.1 Overview

The second step of the traffic analysis process included a vehicle trip distribution procedure which connects the point of origin with a destination. For example, a vehicle trip originating within a new residential subdivision is linked to a point on the perimeter of the study area, also known as a gateway, such as Highway 102 south or Route 214 west. The completion of the trip distribution process helps to understand the magnitude of travel demand to the north, south, east, west, and in some cases a destination internal to the study area. How these trips move through the road network, between the origin and the destination, will be discussed later in *Section 5.5* – traffic assignment.

The distribution of new vehicle trips is a description of the reason why a trip is being made. This is also referred to as the trip type which is often categorized into trips that occur between home and work (i.e. home-to-work, or work-to-home) or shopping areas and home (i.e. home-to-shopping and vice-versa). In essence, this process demonstrates the trip-making synergies between different land use types and the most common example is that trips move to/from large residential areas to/from large employment areas. For this study, separate analyses were undertaken for each of the three land use types expected to grow in the study area: residential, business park and highway commercial. As such, three different traffic distribution patterns were developed for the new travel demand added to the roadway network in the future. A detailed description of each land use type is provided in the following Sections.

5.4.2 New Residential Trip Distribution

The distribution of residential trips is typically based on the trip purpose which is predominantly home-to-work / work-to-home and then to a lesser degree home-to-shopping or recreational

activities. In 2017, GRIFFIN utilized available information cited in MEH's Community Inventory Report as well as the earlier 2014 CBCL traffic study. Since that time, the MEH corridor area has continued to grow, and as documented in the MEH's 2021 Socio-Economic Study report, the travel patterns and place of work of local residences has evolved. The most notable change in recent travel patterns is the fact that fewer commuters are traveling to/from the urban areas of HRM. The 2021 census data suggests that more local residents are working from home, and more commuters are traveling to/from the north for work in places like Truro and New Glasgow, for example. To help illustrate the change in trip distribution between GRIFFIN's 2017 travel demand study and this current study, we provide a comparison in *Figures 10* and *11*. Our final residential trip distribution that was applied to this study and is contained in *Table 11*.

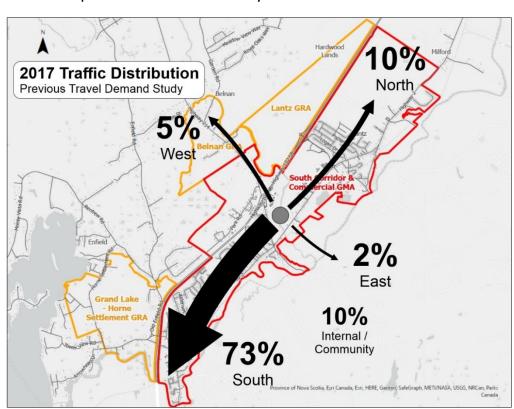


Figure 10: Residential Trip Distribution - Previous 2017 Study

Figure 11: Residential Trip Distribution – Current 2023 Study

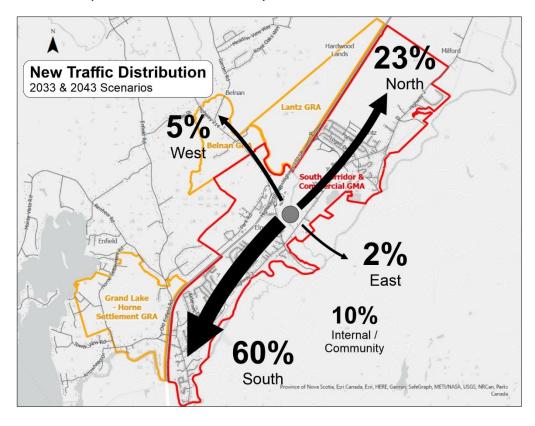


Table 11: Trip Distribution – Residential Land Use

			Residential Trip Distribution	Residential	
Trip Type	Direction	Gateway	Percentage	Desire Lines	
	North	Hwy 102	15%	23%	
	NOTUI	Trunk 2	8%	23%	
	South	Hwy 102	55%	60%	
External		Trunk 2	5%	00%	
	Foot	Elmsdale Rd	1%	20/	
	East	Rte 277	1%	2%	
	West	Rte 214	5%	5%	
Internal	-	-	10%	10%	
		Total	100%	100%	

The residential trip distribution shown above is somewhat similar to the percentages applied in GRIFFIN's 2017 travel demand study. Since new internal trips moving to/from the business park will be captured as an internal trip type under the business park land use type, discussed in the following Section, new residential trips moving to/from the Business Park area were limited so as not to double count this trip type.

5.4.3 New Business Park Trip Distribution

A similar process to that described above was also applied to the new Business Park growth. The main source of information was gleaned from the MEH's 2021 Socio-Economic report and GRIFFIN's 2017 travel demand study. A summary of the distribution percentages applied to this current study for the new trips generated by the expansion of the Business Park lands is provided in *Table 12*.

Table 12: Trip Distribution - Business Park Land Use

			Business Park Trip Distribution	Business Park
Trip Type	Direction	Gateway	Percentage	Desire Lines
	North	Hwy 102	35%	35%
	NOTUI	Trunk 2	0%	35%
	South	Hwy 102	35%	250/
External		Trunk 2	0%	35%
		Elmsdale Rd	2%	Γ0/
	East	Rte 277	3%	5%
	West	Rte 214	10%	10%
Internal	-	-	15%	15%
		Total	100%	100%

5.4.4 New Highway Commercial Trip Distribution

Findings flowing from the research on empirical travel demand surveys has shown that the large majority of trips generated/attracted to highway commercial businesses occur from the background traffic stream already on the adjacent roads and streets — also referred to as "pass-by" trips. It was assumed that this would also be the case for the Enfield, Elmsdale, and Lantz communities and all highway commercial trips would originate from either the background traffic, new residential traffic, or new Business Park traffic. As such, the trip distribution calculation step was skipped for this land use type, and the consultant team focused on the trip assignment stage where these trips were assigned to the road network following ITE pass-by trip analysis procedures.

5.5 Iterative Traffic Assignment Process

5.5.1 Overview

The assignment of new vehicle trips to a road network – as they move from the point of origin to the destination gateway – is often carried out using traffic modeling software packages that have been developed to work on a regional scale. These software tools are ultimately based on theoretical traffic assignment calculation methods developed by researchers several decades ago. Since the East Hants traffic study area is considered to be a small geographic area, the roadway network is simplified with a limited amount of travel route options, in addition to the fact that an extensive effort is required to setup and calibrate a travel demand modeling software tool, it was determined that a manual traffic assignment procedure was best suited to this project.

The fundamental basis of the traffic assignment procedure applied to this study has followed methodologies documented in such documents as the National Cooperative Highway Research Program (NCHRP) Reports 187, 365, and 765. This resulted in our following two-step assignment process:

- Step 1: Capacity-constrained the capacity of the intersections (nodes) and roadways (links) connecting the intersections will impact the travel times and thus the travel route options for new trips. This means that our calculation procedure determined the capacity and delay for each link and node that make up a travel route. The route with the shortest travel time attracted more trips relative to a route with a longer travel time. For example, if Exit 8 reached capacity, delay times and queues would then become excessive, and thus drivers entering/exiting the Highway 102 corridor would choose an alternative route that had residual capacity and more attractive travel times (should another route option exist). In summary, once the capacity of links and nodes is reached drivers will find alternative routes to get to their destination.
- Step 2: Equilibrium with each subsequent iteration, and where more than one travel
 route exists, the vehicle trips were re-assigned to each route option until a relatively
 balanced travel time on each of the routes is reached. The underlying assumption of this
 re-assignment step is that vehicles on competing travel routes shift back and forth until
 some degree of balance is reached mathematically referred to as an equilibrium
 assignment.

A step-by-step illustration of the procedure is provided in *Table 12*.

It should be noted that only a maximum of three manual re-assignment iterations were necessary for this study to reach travel time results that appeared reasonable. Of course, using a travel demand modeling software tool would allow for many more iterations to be carried out in a brief period of time and may provide a more precise result. However, the results calculated from the manual process appeared to be sufficiently accurate and reasonable given the project's simplified roadway network.

Iterative Traffic Assignment Process V Divert a Portion of **Assign New Trips to Background Traffic to new** Network Route(s) $\overline{\Psi}$ Add New + Background **Trips Calculate Travel Times** along Key Routes **Synchro Software** Calculate Capacity and Delay Intersection(s) Over Capacity? No Yes **Summarize Results**

Figure 12: Iterative Traffic Assignment Process Flow Chart

5.5.2 Traffic Assignment Summary

The iterative traffic assignment procedure followed industry best practices that are well-founded in travel demand research and generally followed techniques that have been applied in the industry for several decades. As such, the traffic distribution and assignment procedures used in this study will provide the road agency with a technically sound and technically defensible set of results that will form a key part of the findings for this study.

For each iteration of the assignment process shown in the flow chart above, the peak hour traffic volumes were adjusted, summarized, and input into the Synchro software. The results of the intersection capacity, vehicle delay, and queue length information at each of the 21 study area intersections to help understand travel times across the network. A re-assignment process was undertaken if there a combination of near-capacity conditions existed and there were notable differences in the times on two competing routes.

6. NETWORK ANALYSIS AT 2033 AND 2043 - OPTION 1 LAYOUT

6.1 Future Intersection Analysis Results

6.1.1 Overview

Once the final set of future peak hour traffic volumes were established, a traffic operational analysis process was carried out for the existing, Option 1, road network. The purpose of this step was to identify where capacity constraints occur and thus identify the necessary roadway lane configurations and traffic control upgrades at the study area intersections such that they can adequately accommodate the forecast vehicle demands and operate with acceptable performance measures. The specific analysis steps undertaken included:

- A TAC traffic signal warrant procedure applied to the minor street, unsignalized stopcontrolled intersections to identify the need for upgrades to either traffic signals or a modern roundabout;
- 2. An auxiliary turn lane warrant assessment process at the study area stop-controlled intersections; and
- 3. Detailed lane-by-lane intersection capacity analyses at the study area intersections to identify the need for lane configuration changes to better accommodate demand;

Each of these steps are discussed in the following Sections.

6.1.2 Traffic Signal Warrant Analysis

The analysis process followed the Transportation Association of Canada's (TAC) signal warrant procedure document and is a methodology widely used by road agencies across Canada, including NSDPW. The TAC procedure uses a set of average intersection volumes measured over the six highest hours of a typical day. The results of this calculation process are a number of priority points to indicate whether a traffic signal is warranted. When the minor street peak hour traffic volume exceeds 75 vehicles/hour and the number of priority points exceeds 100, the traffic signal warrant is met. The results flowing from the signal warrant analysis under each planning horizon are contained in *Table 13*.

The results contained in *Table 13* indicate that five unsignalized intersections will require traffic control upgrades by the 2033 planning horizon. Although the TAC methodology indicates the need for traffic signal control, NSDPW considers this warrant procedure to suggest the need for either traffic signals or a modern roundabout. These five intersections included the proposed Wickwire (Armco) South intersection, the potential realignment of the Route 277-Logan Drive intersection, the Exit 8 southbound interchange ramps intersection, the Elmwood Drive intersection, and the Old Enfield Road intersection.

It should also be noted that the Trunk 2 intersections at Frederick Allen Drive, Poplar Drive and Alderney Drive intersections are nearing the 100-point threshold by the 2043 planning horizon.

Table 13: Signal Warrant Analysis Results – Road Option 1

			Option 1 - Existing Roads		
			Equilibrium	Assignment	
No.	Main Road Secondary Road		2033	2043	
1	Trunk 2	Milford Rd	24	25	
2	Trunk 2	FH Street A	20	43	
3	Trunk 2	Wickwire North	38	76	
4	Trunk 2	Wickwire South	131	266	
5	Trunk 2	Frederick Allen	67	94	
6	Trunk 2	Poplar	72	98	
7	Trunk 2	Rte 277 / Logan	128	194	
8	Trunk 2	Church	27	36	
9	Trunk 2	Lantz Connector	Roundabout	Roundabout	
10	Lantz Connector	Shaw Dr	Roundabout	Roundabout	
11	Lantz Connector	Hwy 102 NB Ramps	Roundabout	Roundabout	
12	Lantz Connector	Hwy 102 SB Ramps	Roundabout	Roundabout	
13	Route 214	Trunk 2	Signals	Signals	
14	Route 214	Mason Dr	Signals	Signals	
15	Route 214	Hwy 102 NB Ramps	Signals	Signals	
16	Route 214	Hwy 102 SB Ramps	244	266	
17	Route 214	Park Rd	Signals	Signals	
18	Trunk 2	Elmwood	124	135	
19	Trunk 2	Alderney	83	89	
20	Trunk 2	Shamrock	33	37	
21	Trunk 2	Old Enfield Rd	272	323	

Detailed summaries of the traffic signal warrant analysis results are provided in Appendix IV.

6.1.3 Auxiliary Turn Lane Warrants

The second step in the intersection analysis process included a review of the auxiliary turn lane needs at the unsignalized, stop-controlled intersections. Our analysis assumed the Option 1 road network was in place and assessments were carried out for the 2033 and 2043 planning horizons.

Our analysis did not examine intersections that are currently under traffic signal or roundabout control which included intersections #9, #10, #11, #12, #13, #14, #15, and #17. Further, the signal warrant results presented in Section 6.1.2 were also considered and the intersections that met the warrant criteria were also excluded – including intersections #4, #7, #16, #18, and #21. The remaining eight unsignalized intersections were subjected to the auxiliary turn lane warrant assessment process.

Our methodology examined left turn and right turn lanes separately. The left turn lane warrant review followed Ministry of Transportation of Ontario (MTO) procedures. The right turn lane warrant review followed the Ohio Department of Transportation (ODOT) methodology. A summary of the auxiliary turn lane assessment results are provided in *Table 14*. Detailed auxiliary turn lane warrant assessments are contained in *Appendix V*.

Table 14: Summary of Auxiliary Turn Lane Warrants – Unsignalized Intersections Only

Unsignalized		Option 1 Ro	ad Network
Intersections	Auxiliary Lane	2033	2043
#1 – Trunk 2 / Milford Rd	SB Left Turn Lane	Warrant not met	Warrant not met
#1 - Hulik 2 / Williofa Ku	NB Right Turn Lane	Warrant not met	Warrant not met
#2 – Trunk 2 / FH Street A	NB Left Turn Lane	Warrant not met	Warrant met
#2 - Hulk 2 / Hi Street A	SB Right Turn Lane	Warrant not met	Warrant not met
#3 – Trunk 2 / Robert Scott	NB Left Turn Lane	Warrant met	Warrant met
#3 - Hullk 2 / Nobelt Scott	SB Right Turn Lane	Warrant not met	Warrant not met
#5 – Trunk 2 / Frederick Allen	NB Left Turn Lane	Warrant met	Warrant met
#3 - Hullk 2 / Hederick Alleli	SB Right Turn Lane	Warrant not met	Warrant not met
#6 – Trunk 2 / Poplar Dr	NB Left Turn Lane	Warrant met	Warrant met
#0 - Hulik 2 / Popiai Di	SB Right Turn Lane	Warrant not met	Warrant not met
#8 – Trunk 2 / Church St	SB Left Turn Lane	Warrant not met ^A	Warrant not met ^A
#8 - Hulik 2 / Church St	NB Right Turn Lane	Warrant not met	Warrant not met
#19 – Trunk 2 / Alderney Dr	NB Left Turn Lane	Warrant met	Warrant met
#19 - Hullk 2 / Alderliey Di	SB Right Turn Lane	Warrant not met	Warrant not met
#20 – Trunk 2 / Shamrock	NB Left Turn Lane	Warrant not met ^A	Warrant not met ^A
#20 Hullik 2 / Shallillock	SB Right Turn Lane	Warrant not met	Warrant not met

A – Although warrant threshold exceeded, left turn volumes are less than 2% of approaching volume.

The results summarized in *Table 14* suggest the following:

- Left Turn Lanes: auxiliary turn lane warrants are met at the majority of unsignalized intersections by the 2033 planning horizon, with the exception of Milford Road (#1), Church Street (#8), and Shamrock (#20)
- *Right Turn Lanes*: no auxiliary turn lane warrants were met at any of the unsignalized intersections at under the 2033 or 2043 travel demand.

These results were carried forward to the intersection operational analysis step.

6.1.4 Intersection Operational Analysis

GRIFFIN conducted an intersection capacity analysis at each of the study area intersections at the 2033 and 2043 planning horizon. The analysis process used the latest version of Trafficware's *Synchro* software tool as well as the *Arcady* roundabout software tool. The need for lane configuration upgrades followed the NSDPW traffic impact study guideline requirements. Summary tables of the intersection results as well as detailed capacity reports are provided in *Appendix VI*. These results helped to identify the necessary lane configurations and confirm traffic control at the study area intersections. Conceptual diagrams of only those intersections requiring infrastructure upgrades are provided in Section 6.2.

6.2 Summary of Infrastructure Needs - Option 1 Road Layout

6.2.1 2043 Intersection Upgrades

The results flowing from the traffic signal warrant, auxiliary turn lane warrant, and intersection performance assessments, provided a sound basis to identify the intersections that will require infrastructure upgrades. A total of 14 study area intersections were determined to need some form of upgrade to accommodate the 2043 traffic demand – assuming the Option 1 road network is available. GRIFFIN has prepared conceptual plans to illustrate the upgrades required at each location and this information is provided in Figures 13 to 24. These illustrations are conceptual and are not design drawings; however, they have been used as a basis for the development of preliminary class D cost estimates. The class D cost estimates have been provided with each Figure.

Figure 13: 2043 Upgrades - Intersection #2 FH Street A

\$654,800 implementation cost estimate (Class D, 2023 dollars)

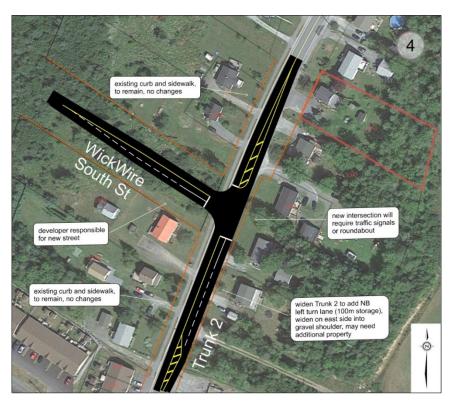
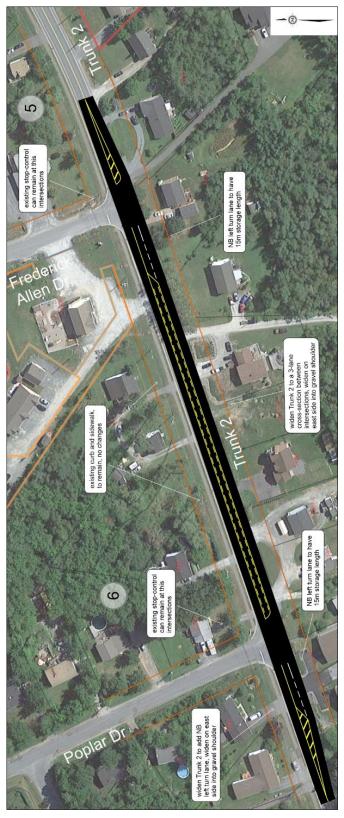
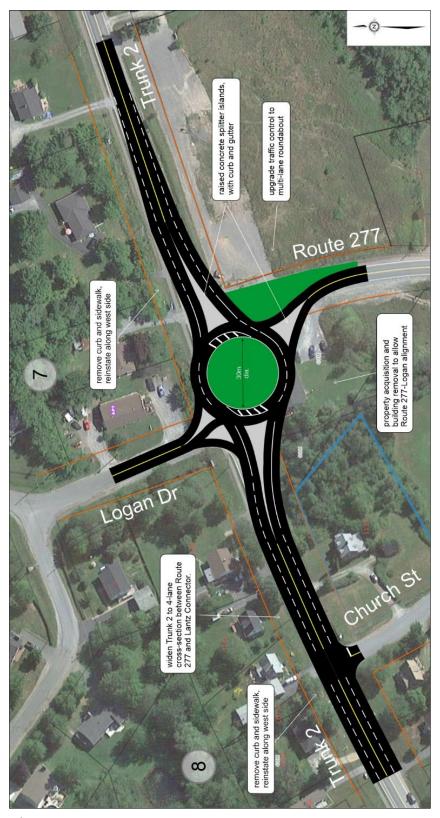


Figure 14: 2043 Upgrades – Intersection #3 Robert Scott Drive

\$811,600 implementation cost estimate (Class D, 2023 dollars)


Figure 15: 2043 Upgrades – Intersection #4 Wickwire South

\$1,223,200 implementation cost estimate (Class D, 2023 dollars)


Figure 16: 2043 Upgrades – Intersections #5 and #6 Frederick Allen and Poplar Drives

\$1,632,400 implementation cost estimate (Class D, 2023 dollars)

Figure 17: 2043 Upgrades – Intersections #7 and #8 Route 277-Logan and Church

\$2,558,600 implementation cost estimate (Class D, 2023 dollars)

new 4th arm to roundabout

12

| Rew channelized right turn by-pass lane | Rew Channelized right turn by-pass lane

Figure 18: 2043 Upgrades – Intersection #12 Exit 8A

\$795,200 implementation cost estimate (Class D, 2023 dollars)

widen to add NB right turn lane widen Route 214 to a 3-lane cross-section, remove asphalt curb, reinstate concrete curb existing traffic signal widen EB approach to add infrastructure to remain EB right turn lane, consider in place relocating Cenotaph property widen WB approach to to add WB left and right turn lanes to manage queues to railway crossing widen to add NB right turn lane

Figure 19: 2043 Upgrades - Intersection #13 Trunk 2 and Route 214

\$1,167,000 implementation cost estimate (Class D, 2023 dollars)

widen Route 214 to 4-lane cross-section from ramps to Park Road intersection

Upgrade from stop-control to traffic signals, add turn lanes and raised islands

Figure 20: 2043 Upgrades – Intersection #16 Exit 8 Southbound Ramps

\$1,341,400 implementation cost estimate (Class D, 2023 dollars)

widen Route 214 to add new EB through lane in advance of Park Rd intersection

existing traffic signal infrastructure to remain in place

widen Route 214 to 4-lane cross-section from Park Rd to Exit 8 ramps intersection

Figure 21: 2043 Upgrades – Intersection #17 Park Road

\$808,000 implementation cost estimate (Class D, 2023 dollars)

existing curb and sidewalk, to remain, no changes

Widen Trunk 2 to add NB left turn lane to have 30m storage length

widen Trunk 2 to add NB left turn lane, widen on east side into gravel shoulder

Upgrade traffic control to traffic signals

Figure 22: 2043 Upgrades – Intersection #18 Elmwood Drive

\$861,800 implementation cost estimate (Class D, 2023 dollars)

NB left turn lane to have 15m storage length

widen Trunk 2 to add NB left turn lane, widen on east side into gravel shoulder

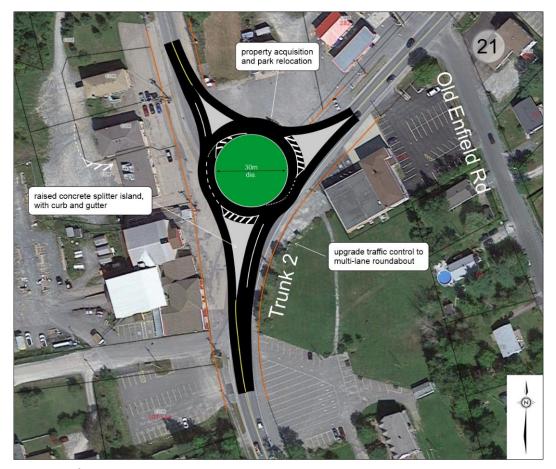

existing stop-control can remain

Figure 23: 2043 Upgrades – Intersection #19 Alderney Drive

\$571,800 implementation cost estimate (Class D, 2023 dollars)

Figure 24: 2043 Upgrades – Intersection #21 Old Enfield Road

\$1,437,200 implementation cost estimate (Class D, 2023 dollars)

6.2.2 Additional 2043 Road Link Considerations

It was identified through the detailed analysis process that the following short road links are expected to require widening by 2043. The need for widening these short sections of road has less to do with providing throughput capacity and more to do with accommodating lane changing and weaving movements between closely-spaced intersections.

• Trunk 2 Lantz:

- New 3-Lane cross-section (550m): Install a three-lane cross-section (one through lane in each direction, plus a centre two-way left turn lane) from Route 277 to Frederick Allen Drive. This will help facilitate the transition between the two lanes to the north and the four lanes to the south. Further, multiple left turn lanes are warranted in this area and providing a continuous three-lane section is preferred to help reduce driver workload associated with shifting lane alignments.
- New 4-Lane cross-section (275m): Install a four-lane cross-section between the Lantz Connector Road roundabout and Logan Drive. This will offer improved weaving and lane changing distances in this area of increased volume.

Route 214 Elmsdale:

- New 3-Lane cross-section (725m): Install a three-lane cross-section (one through lane in each direction, plus a centre two-way left turn lane) from the existing three-lane section at Brook Court through to Trunk 2. This will offer similar throughput capacity as exists today, provide refuge for left turning vehicles, be more compatible with a future "main street streetscape", and offer opportunities for walkable facilities on both sides of this corridor.
- New 4-lane cross-section (200m): Install a four-lane cross-section between the Park Road and Exit 8 southbound ramps intersections to better accommodate adequate weaving and lane changing distances between these two closelyspaced intersections.

6.3 A Word on the Cost Estimates

Using the intersection operational analysis results as discussed in Section 6.1.4, GRIFFIN was able to identify the specific intersections that would require infrastructure upgrades by the 2043 planning horizon. These conceptual upgrades were provided to GEMTEC who applied their design and construction administrative experience to develop preliminary planning level (class D) infrastructure cost estimates for each location.

The infrastructure cost estimates are considered to be preliminary and have been provided in 2023 dollars. They are reflective of current industry conditions as they incorporate provisions for the recent increase in material costs over that last few years. A summary of GEMTEC's basic cost estimating assumptions is provided in *Table 15*.

Table 15: Basic Cost Estimate Assumptions

Item	Assumed Value	Item	Assumed Value
Intersection Radius	12 m	Turn lane storage length	15 m
Asphalt Lane Width	3.3 m	Turn lane taper	Single-side widen: 15:1
			Dual-side widen: 36:1
Gravel Shoulder	1.2 m	Asphalt thickness	0.15m
Culvert diameter	600 mm	Granular thickness	0.45 m
Roundabout - Landscaped	1.2m	Granular surrounding curb	0.135 sq.m/m
mound height			

A more detailed cost breakdown of unit costs and assumptions that were applied to each location are provided in *Appendix IX*.

It should be noted that the cost estimates do not include land acquisition costs or building removal costs; however, the type of land use and/or building has been provided to help understand the potential order of magnitude cost of these items. Conversely, the GEMTEC's cost estimates include such items as the engineering design fees, a construction contingency, traffic control during construction, signage, and so forth.

7. NEW INTERCHANGE LOCATION ASSESSMENT

7.1 Overview

Based on the results of the 2043 planning horizon road network evaluation presented in the previous section, there are a number of road network locations that are nearing capacity. This is not unexpected given the fact that by the 2043 planning horizon we expect the entire study area to grow by 6,107 new residential units – with 4,130 or 68% of these units occurring in Lantz alone – plus an increase of 333,550 ft² of new commercial space.

We also know from our analysis results discussed in the previous Section that beyond the 2043 planning horizon, the long-term travel demand is expected to require road upgrades that fall into two categories:

- 1. Widen long stretches of Trunk 2 to a four-lane cross-section. This will have negative impacts for numerous property owners and businesses and will be a resource intensive implementation process, or
- 2. *Install a new Highway 102 interchange and connector road*. This will improve access to the Highway 102 regional travel corridor and reduce congestion and demand on Trunk 2. However, given the very linear nature of our study area the benefits of a new interchange are expected to only occur in the general vicinity of this new facility.

If we look at the first network upgrade option – widen Trunk 2 – although it would be invasive and resource-intensive, it is not expected to impact travel behaviour or travel patterns in the study area (i.e. drivers will be provided with the capacity to continue traveling how and where they currently already do). If we then consider the second network upgrade option – a new interchange – there are more variables and additional assessment is required to understand how and where this new facility could offer travel benefits, such that it most efficiently serves the transportation needs of the community. Therefore, we focus on the latter and present a preliminary planning-level assessment for a new Highway 102 interchange facility in the next Sections.

7.2 Location Considerations

Through our independent discussions with the NSDPW and the MEH, we identified two candidate interchange locations that appeared to have merit and thus were subjected to further examination. The two locations included the following:

• South Location: Through discussions with MEH there is a notable amount of new residential development that could occur in Enfield and the adjacent unserviced Horne Settlement GRA. As noted earlier, this particular GRA is very confined by Grand Lake, the Shubenacadie River to the South and Highway 102 to the east. Given these mobility constraints, GRIFFIN identified the Old Enfield Road bridge structure location as a potential candidate future interchange location to help alleviate congestion along trunk 2.

North Location: There is significant amount of new residential units expected in the
community of Lantz, particularly beyond 2043. Therefore, to help off-set the need to
widen Trunk 2 to four lanes for several kilometers, GRIFFIN examined a new interchange
location immediately north of the regional service area and the boundary between Lantz
and Milford.

GRIFFIN then conducted a high-level screening assessment to identify transportation constraints or limitations that could be expected if either of these two locations were to accommodate a new interchange. The goal of such an assessment attempts to provide a relative comparison of the suitability and potential benefits associated with the two interchange locations.

7.3 Evaluation Criteria Descriptions

7.3.1 Overview

The following list of proposed evaluation criteria were assembled to facilitate the high-level assessment of the two potential interchange locations. The proposed evaluation criteria have been grouped into four categories; Transportation and Design, Socio-economic, Environment and Land-use/Settlement.

Numerous candidate criteria were considered by the consultant team. Through internal discussions these were reduced to the following list of 10 criteria which appeared to represent the most relevant transportation-related parameters that could reasonably be assessed in this study.

7.3.2 Transportation Demand

- 1. Vehicle Travel Times and Road Network Delay: An assessment of the difference in vehicle travel times (moving along Trunk 2 and the available Highway 102 interchanges) was used as a proxy measure. The results flowing from our 2043 planning horizon analysis were used for this criterion.
- 2. Amount of Vehicle Utilization at New Interchange: An assessment of the forecast vehicle demand expected to use the new interchange was applied to this criterion. Our review included a combination of both AM and PM peak hour vehicle demand.
- 3. Ability to Manage Demand along Trunk 2 Corridor: An assessment of the available capacity between intersections and the forecast vehicle demand in the corridor. GRIFFIN used the 2043 vehicle demand and intersection performance results for this comparative review since this planning horizon is nearing the point at which sections of road are reaching capacity.

7.3.3 Geometric Design

4. Interchange Spacing and Access to Highway 102: An assessment of the distance between the proposed interchange and the next nearest existing interchange – measured along Highway 102 – relative to TAC guidelines was used. Our assessment of this criteria also considered benefits offered by the new interchange and its access/coverage to the Highway 102 corridor for emergency services and emergency detour routes.

- 5. Ability to Implement Access-Controlled Connector Road between Trunk 2 and new Interchange: Providing an access-controlled roadway linking the new interchange with the Trunk 2 corridor is a priority for the NSDPW and will preserve the traffic operations and functionality for the new interchange well beyond the planning horizons examined in this study. This criterion examines the ability to implement an access-controlled connector road.
- 6. *Implementation Constraints of New Interchange:* This criterion examines the ease of implementation of a new interchange. Our assessment considered the need to remove buildings/structures, if a bridge structure already exists, the need to purchase land for ramp facilities, and so forth.

7.3.4 Land Use / Settlement

- 7. Promotion of an Efficient Settlement Pattern: New development can be managed using land use planning policy, or allowed to develop somewhat organically by building road capacity in certain areas to encourage growth. The former is a preferred growth management method. This criterion examines the compatibility of the candidate interchange location with the MEH's planned growth areas presented earlier in this report.
- 8. Efficiently Serving New Growth Areas: Given MEH's policy directives and planned residential growth within the serviced boundary area, our assessment of this criteria examined how well the new interchange location most efficiently serves the planned growth.

7.3.5 Environment

- 9. *Potential for Watercourse/Wetland Impact:* An assessment of the potential impacts the new interchange location, and its connector road, may have on existing watercourses (eg. Barney's Brook).
- 10. Amount of Study Area Fuel Consumption: An assessment of the expected fuel consumption for vehicles traveling on the study area road network. This criterion examines the relative amount of vehicle-miles traveled, a proxy measure of the amount of fuel consumption.

7.3.6 Socio-Economic

- 11. Impacts on Existing Property / Buildings: Implementing new transportation infrastructure can have a notable impact on the socio-economic fabric of a neighbourhood. The impacts to existing adjacent businesses and residences in the vicinity of the two candidate locations was used to assess this criterion.
- 12. Opportunity to Create New Development Opportunities: This criterion qualitatively examines the opportunities created through the implementation of a new interchange facility. This could include opportunities for new development of greenfield areas particularly along the Highway 102 corridor where there good visibility and access for commercial and industrial businesses exists.

7.4 Scoring Methodology

There are various scoring methods that could be applied to a qualitative interchange location evaluation process and these could range from simple ranking systems to more complex systems with five or six pre-defined scores. It was determined that the following simple two-score ranking

system would be sufficient for this study and provide for a relative ranking between the two candidate interchange locations:

Rank Description	Corresponding Score
Most Preferred	Letter Grade of 'A'
Least Preferred	Letter Grade of 'B'

The scoring procedure involved a two-step process that was carried out by the consultant team members. In the initial step, each of the proposed evaluation criteria were assessed and a technical, fact-based rationale was prepared – a summary of which is contained in *Appendix VIII*. In the second step, the consultant team members summarized the fact-based rationale by assigning it a letter grade – either "A" or "B" – with "A" representing the more preferred option. The results of this process are presented below.

7.5 Summary of Assessment Results

Once all of the technical fact-based comments were assembled, they were summarized using the scoring system described above. This process allowed the evaluators to efficiently identify the relative rank of each proposed interchange location. This visual summary is contained in *Table 16*.

Table 16: Interchange Location Assessment Summary

	New I/C - Cand	idate Locations
	Enfield South	Lantz North Near
	Old Enfield Road	Lantz-Milford Boundary
A. Transportation Demand		
1 Vehicle travel times / road network delay	В	Α
2 Vehicle utilization of new interchange	В	Α
3 Ability to manage demand in Trunk 2 corridor	В	Α
B. Geometric Design		
4 I/C spacing along Hwy 102	А	Α
5 Access-controlled Connector Road	В	Α
6 Implementation constraints	В	Α
C. Land Use / Settlement Impacts		
7 Promotes efficient settlement pattern	В	Α
8 New I/C serves greater population/employment	В	Α
D. Environment		
9 Estimate of watercourse/wetland impacts	Α	В
10 Estimate of network fuel consumption	В	А
E. Socio-Economic		
11 Existing property/building impacts	В	А
12 Opportunity to create highway commercial businesses	В	А
TOTAL SCORE	Mostly B's	Mostly A's
RANK ORDER	2	1

The results indicate the Lantz north location has the most "A" scores relative to the Enfield south location. Therefore, The Lantz north interchange is the most preferred location using the 10 evaluation criteria applied in this study.

Of course, a more in-depth multidisciplinary assessment is expected to be needed to comprehensively evaluate the Lantz north location. This could include such assessments as an Environmental Assessment (EA), a detailed cost-effectiveness assessment, on-going discussions with key stakeholders, and so forth. The findings contained in this report are simply focused on identifying the most efficient transportation solution.

7.6 Conceptual Layout Considerations

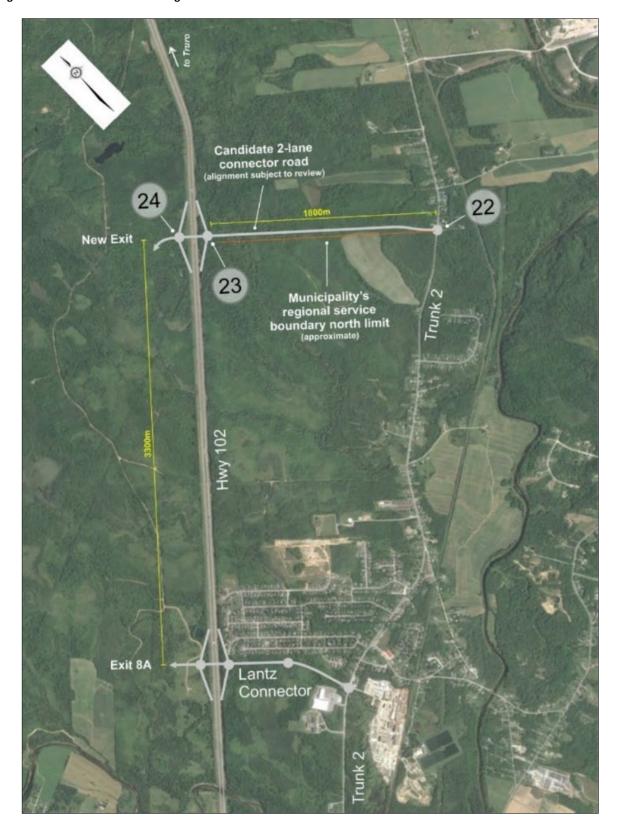
Once the preferred interchange location was identified, GRIFFIN then examined a more refined location for the interchange facility along the Highway 102 (i.e. interchange spacing requirements, driver visibility, connection of ramp terminals to the mainline lanes, etc.), as well as a suitable location for the connector road to intersect with Trunk 2 (i.e. visibility, intersection spacing, grades/slopes, etc.). In addition, the alignment of the new connector road needed to be in close proximity to the future urban development such that it allowed for an attractive and convenient travel time to/from Highway 102, but also minimized impacts to the new neighbourhood plans within the serviced area.

Considering all known high-level constraints, limitations, and opportunities, GRIFFIN then identified a preferred location immediately north of the Lantz-Milford boundary, which generally coincides with the north limit of MEH's growth management area. This location is illustrated in *Figure 25*.

7.7 Description of the Preferred Interchange Location

7.7.1 Highway 102 Interchange Spacing

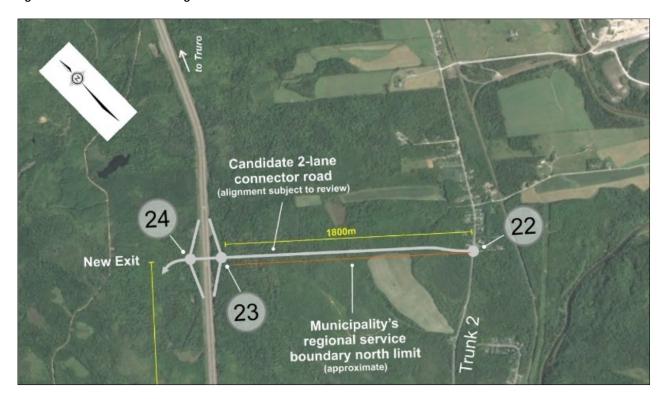
The new interchange location shown in *Figure 25* would provide approximately 3.3 km of interchange spacing distance along Highway 102. This is the centre line distance to Exit 8A (Lantz) and exceeds TAC's minimum 2 km spacing guidelines. This particular location is situated on a tangent section of Highway 102 which has good driver visibility in both directions.


7.7.2 Interchange Configuration

Following NSDPW best practices, a diamond interchange configuration was assumed in this study and formed the basis of both the traffic operational analysis as well as the cost estimating process. Our operational analysis confirmed that a two-lane, two-way bridge structure with an active transportation facility would suffice, along with single-lane roundabouts at each ramp terminal.

It was determined that single-lane roundabouts could accommodate traffic volumes associated with the future unconstrainted growth scenario. Therefore, the cost estimating process assumed the same bridge structure, roundabout layouts, and other characteristics as was recently installed at the new Exit 8A (Lantz) interchange.

Figure 25: Preferred New Interchange Location



7.7.3 Connector Road Description

The approximate location of the connector Road was identified by GRIFFIN and is shown in more detail *Figure 26*. The alignment of the connector road is adjacent to the MEH's GMA north boundary and avoids utilizing valuable land within the serviced area; however, is close to the planned neighbourhoods in the Lantz north area which will help ensure the new facility will be attractive from a travel time and convenience perspective.

Figure 26: A New North Interchange and Connector Road

The new connector road linking the new interchange to Trunk 2 is estimated to be about 1.8 km in length. The detailed lane configuration and operational performance of the new intersections (#22, #23 and #24) are presented later in Section 8. The new intersection connection at Trunk 2 (intersection #22) offers good driver visibility as it is situated along a tangent section with minimal vertical deflection. Our analysis has identified that a three-arm modern roundabout at intersection #22 is preferred. This configuration does allow for a future potential fourth arm, offering access to vacant lands east of Trunk 2.

7.7.2 Additional Development Opportunities

Long-term, a new Highway 102 interchange in this location would offer a high-quality second access to the properties immediately west of Highway 102 – lands that are well-suited for new Business Park development opportunities. Potentially, MEH could expand their commercial and Business Park land use types extending from the Nine Mile River north to this new interchange location. These lands would be afforded with multiple quality access points for employees and

truck traffic via two interchanges. It also offers MEH with a viable long-term solution to increase their Business Park land inventory – well into the future.

7.8 Caveats

It should be noted; however, that the new interchange and connector road location presented in this report is preferred only from a travel demand and transportation efficiency perspective. A more comprehensive, multidisciplinary assessment will be required to better solidify the exact alignment of the connector road and confirm the suitability and constructability of the connections at either end (i.e. at Trunk 2 and Highway 102).

8. NETWORK ANALYSIS - OPTION 2 LAYOUT

8.1 Overview

As concluded in the previous Section, the 2043 growth scenario is expected to generate travel demand that begins to approach the capacity of the existing, or Option 1 road network. We also know there is a considerable amount of future growth that is expected to take place beyond the 2043 horizon year. In this Section, we qualitatively examine the road network impacts assuming the unconstrainted, or full build-out growth scenario comes to fruition, and is combined with availability of added road capacity via a new Lantz north interchange facility.

8.2 Qualitative Assessment of the Unconstrained Growth Scenario

GRIFFIN used the TAC signal warrant analysis process to help qualitatively assess the Option 2 Road layout under a long-term unconstrained growth scenario. This provided a set of results to help understand how travel patterns are expected to shift with a new north interchange in place. Our analysis methodology was consistent with the signal warrant procedure presented earlier in this report. Results exceeding the 100-point threshold indicate the need for upgrades to either a traffic signal or modern roundabout. To assist in understanding the changes, GRIFFIN has provided results for both the Option 1 and Option 2 road layouts in *Table 13*.

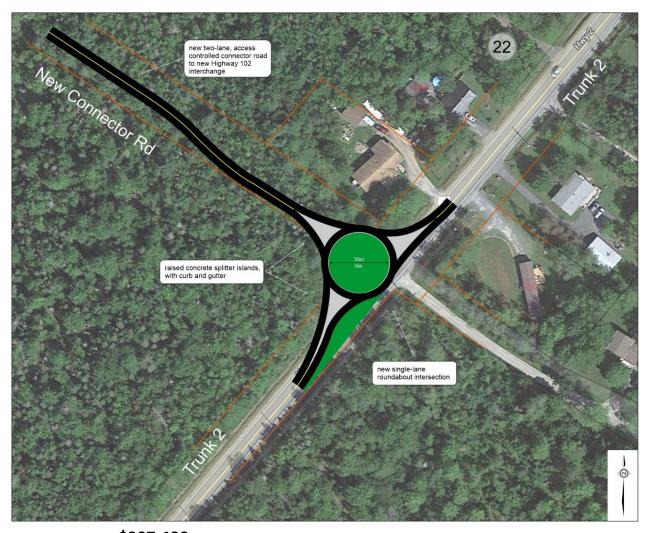
Table 17: Signal Warrant Analysis Results – Road Option 2 Network

			Option 1 - Existing Roads		Option 2	- North I/C
			Equilibrium	Assignment	Equilibrium	Assignment
No.	Main Road	Secondary Road	2033	2043	2043	Unconstrained
1	Trunk 2	Milford Rd	24	25	48	62
2	Trunk 2	FH Street A	20	43	73	180
3	Trunk 2	Wickwire North	38	76	107	212
4	Trunk 2	Wickwire South	131	266	210	380
5	Trunk 2	Frederick Allen	67	94	57	76
6	Trunk 2	Poplar	72	98	75	99
7	Trunk 2	Rte 277 / Logan	128	194	153	210
8	Trunk 2	Church	27	36	27	33
9	Trunk 2	Lantz Connector	Roundabout	Roundabout	Roundabout	Roundabout
10	Lantz Connector	Shaw Dr	Roundabout	Roundabout	Roundabout	Roundabout
11	Lantz Connector	Hwy 102 NB Ramps	Roundabout	Roundabout	Roundabout	Roundabout
12	Lantz Connector	Hwy 102 SB Ramps	Roundabout	Roundabout	Roundabout	Roundabout
13	Route 214	Trunk 2	Signals	Signals	Signals	Signals
14	Route 214	Mason Dr	Signals	Signals	Signals	Signals
15	Route 214	Hwy 102 NB Ramps	Signals	Signals	Signals	Signals
16	Route 214	Hwy 102 SB Ramps	244	266	266	338
17	Route 214	Park Rd	Signals	Signals	Signals	Signals
18	Trunk 2	Elmwood	124	135	135	147
19	Trunk 2	Alderney	83	89	89	97
20	Trunk 2	Shamrock	33	37	37	41
21	Trunk 2	Old Enfield Rd	272	323	323	491

It should be noted that GRIFFIN did not complete signal warrant analyses for the Option 2 road layout under the 2033 planning horizon due to the fact that our previous set of results presented in Section 6 indicates the existing road network can accommodate the travel demand at that planning horizon. Therefore, our analysis focused only on the 2043 and the long-term unconstrained / full build-out growth scenarios.

If we compare the results at the 2043 planning horizon, for both the Option 1 and 2 road layouts, we can conclude that the opening of the new Lantz north interchange only influences traffic patterns in the Lantz area, and thus changes to the signal warrant results only occurred at the intersections in the community of Lantz. The signal warrant results for the unsignalized intersections in Elmsdale and Enfield are not expected to change. If we focus on the Lantz intersections we can draw the following additional conclusions about the impacts of the new interchange:

- At 2043, the intersections from Milford Road (#1) to Wickwire North (#3) are expected to
 all have an increase in priority points with the new interchange open. Conversely, the
 intersections from Wickwire South (#4) south to Church Street (#8) will all experience a
 reduction in priority points. This trend is expected as travel patterns shift away from Exit
 8A as some drivers will utilize the new interchange to access Highway 102.
- At 2043, the Wickwire North Access is expected to require an upgrade to either traffic signals or a roundabout with the new interchange open
- All other conclusions associated with traffic control upgrades remain unchanged from the conclusions presented in Section 6.


If we look further into the future under a full build, or unconstrained growth scenario, then we can conclude that the three new intersections along Trunk 2, including FH Street A (#2 = 180 points), Wickwire North (#3 = 212 points), and Wickwire South (#4 = 380 points) will all require either traffic signals or a roundabout due to the shift in travel patterns to/from the new interchange. Again, these are long-term improvements, beyond 2043, that will be required under full build-out growth scenario with a new interchange facility in place.

8.3 New Interchange Connection Lane Configurations

Once the iterative assignment of the long-term unconstrained growth scenario was complete, GRIFFIN then carried out an intersection analysis of the new intersections associated with the new interchange in Lantz north. This included the Trunk 2 / New connector road (intersection #22), the new interchange northbound ramps (intersection #23), and the new interchange southbound ramps (intersection #23). The lane configuration concept sketch and intersection location for the new intersection #22 at Trunk 2 is contained in *Figure 27*.

Figure 27: Intersection #22 Concept Sketch

\$907,400 implementation cost estimate (Class D, 2023 dollars)

The additional infrastructure cost estimates associated with the new north interchange were prepared by GEMTEC and include the following:

Two-lane Connector Road (1.6km length): \$3,906,000

Roundabout intersection #23 and ramps: \$4,465,000

Roundabout intersection #24 and ramps: \$4,958,000

Interchange bridge structure: \$4,095,410

It should also be kept in mind that in the absence of the new interchange, we expect Trunk 2 would require widening to four lanes, along with other upgrades that likely would include traffic signals at Frederick Allen Drive and Poplar Drive, plus widening of the Lantz Connector Road to four lanes. These trade-offs should be considered in any future cost-effectiveness assessment.

9. CONCLUSIONS AND RECOMMENDATIONS

9.1 Concluding Thoughts

9.1.1 Overview

The East Hants Traffic Study provides a long-term strategy to establish a transportation system upgrade plan that can accommodate the expected travel demand increases along the Trunk 2 and Highway 102 corridors. The successful implementation of this strategy can only be accomplished through the coordinated actions between the NSDPW, the MEH and HRM. This coordinated effort will help define the necessary land use planning, road infrastructure planning, design efforts, and funding requirements for the necessary infrastructure needed to support community growth.

A summary of our salient findings flowing from this study are presented in the Sections below.

9.1.2 New Growth Estimates

As presented earlier in this report, GRIFFIN developed population and employment growth settlement scenarios for the 2033, 2043 and unconstrained full building-out planning horizons. These settlement patterns formed the basis of the travel demand calculation process. The summary of expected growth at each planning horizon is provided in *Table 18*.

Table 18: Summary of Future Growth Scenarios

Location	New Growth 2023-2033		New Growth 2023-2043		New Growth Unconstrained	
Description	Residential (units)	Commercial (ft²)	Residential (units)	Commercial (ft²)	Residential (units)	Commercial (ft²)
MEH SCC GMA	+4,211	+460,693	+5,512	+796,700	+7,070	+1,268,300
MEH GRA's	+187	+25,000	+299	+75,000	+748	+100,000
MEH Rural Areas	+46	0	+74	0	+185	0
HRM	+139	0	+222	0	+555	0
TOTAL	+4,583	+485,693	+6,107	+871,700	+8,558	+1,368,300

In summary, this study assumes a residential growth rate from 2023 to 2043 of about 306 new units/year, plus supporting commercial floor space.

9.1.3 Road Capacity Conclusions

The following is a summary of the key findings identified through our road network analysis, assuming the rate of growth applied in this study is realized:

• Lantz Area Road System: By 2043, the existing road system will be nearing capacity, as long as the site-specific intersection upgrades noted earlier in this report occur over time between now and 2043 (i.e. new auxiliary turn lanes, new traffic signals, etc.). Beyond 2043 new capacity will need to be added in the form of either widening the Trunk 2

corridor to a four-lane cross-section from the Lantz Connector Road to around the Robert Scott Drive intersection, or instead, build a new Highway 102 interchange facility near the Lantz-Milford community boundary. A new interchange will shift travel patterns and offset / eliminate the need to widen Trunk 2 through Lantz.

• Elmsdale Area Road System: By 2043, the Exit 8 interchange intersections (i.e. Park Road to Mason Drive) are expected to reach near-capacity conditions – particularly at the two closely-spaced signalized intersections on the east side of the interchange. It appears that some additional capacity could be added by upgrading these two signalized intersections to modern roundabouts along with a new widened Exit 8 bridge structure, but this would have a significant impact on existing businesses and the built environment.

Therefore, land use growth controls appear to be a preferred approach to managing the rate of future development growth in this area, to in-turn manage the traffic demand moving to/from the Exit 8 area. For example, our analysis of the Business Park access via Park Road confirms previous conclusions which suggest the Park Road signalized intersection will reach capacity once an additional 435,600 ft² of building space is built and occupied. As such, the MEH should begin identifying additional long-term Business Park lands in an alternate location. A candidate location could be in the vicinity of Exit 8A (Lantz) on the west side of Highway 102.

• Enfield Area Road System: By 2043, the existing road system can accommodate the forecast vehicle demands, assuming the traffic control at the Trunk 2 / Old Enfield Road intersection is adequately upgraded. It is recommended that a modern roundabout be installed as it will better manage the north-south queues on Trunk 2 relative to a traffic signal. Beyond 2043, and with the full development potential of the Horne Settlement GRA, traffic demand increases along Old Enfield Road will be significant and there are long-term operational concerns with the Trunk 2 / Old Enfield intersection and Trunk 2 towards Exit 7. A new collector road linking the Horne Settlement GRA with Route 214 will offer a convenient alternative to the only viable access through the Old Enfield Road corridor.

9.1.4 New Interchange and Connector Road

Our analysis results suggest that the amount of new residential and commercial development in the community of Lantz that is already approved – or is in the MEH approval process – will generate traffic demand that will exceed the capacity of the existing road network – particularly Trunk 2. Of course, this conclusion incorporates and accounts for the implementation of minor intersection upgrades, as needed, between now and 2043. As documented earlier in this report, there are two general network upgrades that could be considered to address this issue in the Lantz area beyond 2043; either invest in a widening of Trunk 2 to four lanes, or invest in a new Highway 102 interchange and connector road.

Our preliminary planning-level assessment has concluded that investing in a new interchange facility is the prudent course of action and the most efficient location for this new facility is in close proximity to the planned neighbourhoods of Lantz north. Our assessment has identified suitable candidate connection locations on both Highway 102 – for a new diamond interchange – and on Trunk 2 for new roundabout intersection. Both connections are located near the Lantz-Milford community boundary.

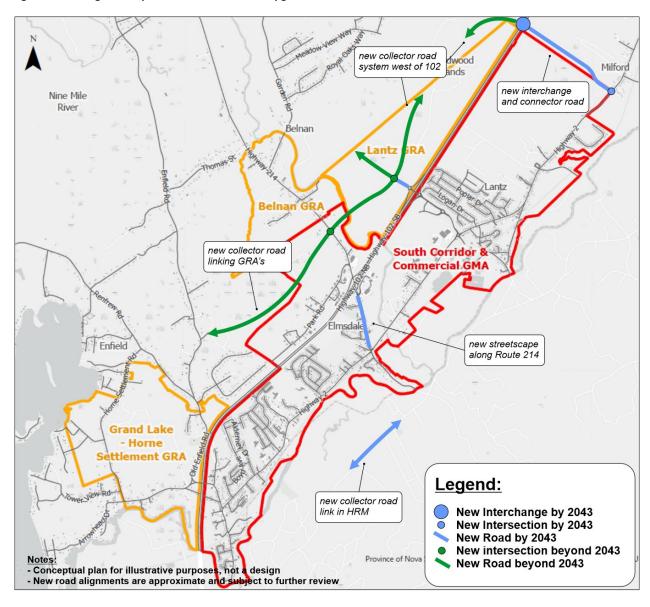
9.2 Recommendations

The following recommendations flowed from the study findings presented in the previous Section:

1. New Strategic Road Upgrades / Improvements:

By 2043

- a) Design New Interchange: complete planning and design of new Highway 102 interchange and connector road in Lantz north area. Expected to be required to accommodate growth by 2043.
- b) New HRM road connection: HRM to open a new road connection linking Old Truro Road with Old Post Road. This will improve mobility / connectivity within HRM and help reduce travel demand in MEH – particularly along Route 214 and Exit 8.
- c) Route 214 Corridor: implement planned streetscape improvements that are consistent with a small town main street environment. This corridor is expected to transition from a vehicle corridor to a local destination. Upgrade features could include such characteristics as a three-lane cross-section, low vehicle operating speeds, no through trucking, a walkable environment that accommodates all road users, and so forth.
- d) Implement 2043 Intersection improvements: add intersection capacity in select locations by the 2043 planning horizon, as documented in this report.


Beyond 2043

- e) Install New Interchange: construction of a new Highway 102 interchange and connector road in Lantz north area.
- f) New Collector in Lantz GRA: provide a new collector road to serve new Commercial / Business Park lands on west side of Highway 102. This new road will link the Exit 8A and new interchange in Lantz North, offering two good quality connections.
- g) New Collector across Nine Mile River: provide a new collector road that links Exit 8A to Route 214 in the vicinity of Belnan to improve mobility / connectivity. This connection would also provide a quality secondary access to the Park Road Business Park.
- h) New Collector between Horne Settlement and Belnan GRA's: provide a collector road linking these two GRA's that currently have limited access. Also improves mobility / connectivity for residents.

These road network upgrades are conceptually shown in *Figure 28*. It should be noted the roadway alignments are approximate and subject to further evaluation. Intersection and interchange locations are illustrative concepts and exact locations may need to change to meet engineering design requirements.

Figure 28: Strategic Concept Plan of Road Network Upgrades

2. New Interchange Facility:

a) New Diamond Interchange: That a new diamond interchange be installed at about 3.3 km north of Exit 8A (centre-to-centre). This location is on a tangent section of Highway 102 with good driver visibility in both directions. The design of this interchange, including the ramps, roundabouts, and bridge structure, can be similar to the recently built Exit 8A interchange which will offer sufficient capacity beyond the 2043 planning horizon. It should be noted; however, that the location is important to attracting travel demand away from the Trunk 2 corridor. Thus, the further north it is located, the less demand it will attract. Ideally it will be located in the Lantz north area, near the Lantz-Milford boundary.

b) New Connector Road: That a new 1.8 km connector road be installed at the same time the new interchange is constructed. A two-lane, two-way cross-section will offer sufficient capacity to accommodate the full build-out travel demand scenario. Although GRIFFIN has identified a preferred roadway alignment near the Lantz-Milford boundary, it will need to be subjected to further evaluation.

3. Future Land Use Planning Policy:

- a) Establish Growth Controls in GRA's: MEH has established growth reserve areas to allow unserviced development to occur; however, it is recommended that planning policy continue to encourage the large majority of residential growth to occur in the GMA. Increasing density in the GMA will allow MEH to service and maintain resources in a much more efficient manner. Further, if residential growth in the GRA's exceeds the values used in this study, we can expect it to direct more vehicle demand in and around Exit 8. This is undesirable due to the physical constraints in this area and the very limited ability to expand the roadway capacity.
- b) Establish Growth Controls in vicinity of Exit 8: The planned population and employment growth in the vicinity of Elmsdale and Belnan is expected to fully utilize the road system capacity in and around Exit 8 by the 2043 planning horizon. Therefore, growth controls are recommended particularly for commercial and Business Park growth. Development growth controls are not intended to prevent growth, but to manage future growth in such a manner that it is measured and monitored over time.
- c) Establish Growth Controls in HRM: All future growth within the adjacent lands of HRM is expected to travel across the limited number of Shubenacadie River crossings due to the very limited road network connectivity in this area. This is expected to notably increase traffic along Route 214 and Exit 8 in Elmsdale. Therefore, growth controls will be necessary to preserve the future functionality of the road system in Elmsdale.
- d) Encourage Business Park Growth at Exit 8A: The undeveloped lands along the west side of Highway 102 offer a good development opportunity for MEH to expand their Business Park land inventory. This area has the opportunity to have good vehicle / truck access via the existing Exit 8A and the proposed new Lantz north interchange. There is also potential to have a connection across the Nine Mile River to offer improved connectivity to Route 214 in the Belnan area.

Lastly, it is recommended that the NSDPW continue working with the MEH and HRM Planning Departments to ensure land use planning policy is aligned with the preservation of the local road functionality. The transportation mobility findings flowing from this study can be used to nourish these discussions and help the stakeholder Municipalities incorporate the study conclusions into their important guiding documents such as GFLUM plans, future streets maps, transportation plans, etc.

Appendix I Request for Proposal

Document

Public Works

Request for Proposals (RFP) for Trunk 2 and Route 214 Traffic Study

Highway Engineering Services Standing Offer # WS74819983

May 5, 2023

Trunk 2 and Route 214

1.0 BACKGROUND

The Municipality of East Hants has been one of the fastest growing municipalities in Nova Scotia in recent years. This growth has been led by residential development along the Trunk 2 corridor from Enfield to Lantz and commercial/industrial development near the Highway 102 (Exit 8) interchange in Elmsdale. A high growth rate is expected to continue with several large residential developments planned in this area, continued expansion of commercial and industrial areas, and new developments near the newly constructed Exit 8a Lantz interchange.

Increased development has resulted in a corresponding increase in traffic volumes along arterial and collector roads, in particular Route 214 between Trunk 2 and Park Road. In 2014 a joint traffic study with East Hants was completed to assess traffic operations for both Route 214 and Trunk 2. The study recommended a variety of upgrades including a new interchange, intersection upgrading, etc. Since this time the Lantz interchange has been constructed.

Recent development plans, including large residential developments in Lantz, Elmsdale, and Milford have accelerated the traffic demands on Route 214 and Trunk 2 sooner than anticipated. The last study covering this area and assessing upgrades occurred almost 10 years ago, and traffic patterns and projections may have changed in the interim.

To assess the timing and suitability of roadway improvements DPW has decided to hire a qualified consulting firm to conduct a traffic study. The scope of work contained in this request for proposals (RFP) outlines the general requirements for the preparation of the Trunk 2/Route 214 Corridor Study. Innovation and suggestions for alternate study methodologies that achieve the desired study objectives are encouraged.

2.0 OBJECTIVES

The primary objectives of this study are to:

- 1. Review the outcomes, projections, and recommendations from the previous traffic studies in this area.
- 2. Assess future traffic patterns on Trunk 2 and Route 214 based on planned development within the study area and assess the appropriateness and timing of the previous recommendations.
- 3. Identify roadway deficiencies for each study horizon including recommended mitigation measures and costs.
- 4. Develop corridor improvement plans using recommended mitigation measures.
- 5. Determine the need for an additional Highway 102 interchange in the study area.

3.0 STUDY SCOPE

The study area shall include:

- 1. Trunk 2 starting at the intersection with Milford Road heading southerly to the intersection with Oldham Road, and Route 214 from Trunk 2 to Park Road.
- 2. The study shall also consider future traffic from the Halifax Regional Municipality side of the Shubenacadie River along Routes 214 and 277.
- 3. Study analysis shall be completed for the following time horizons.
 - Horizon 1 10 years 2033 (Entire Study Area)
 - Horizon 2 20 years 2043 (Entire Study Area)

4.0 DUTIES OF THE CONSULTANT

- 1. Familiarization with the study area including, but not necessarily limited to, existing and proposed highway infrastructure, existing development, zoning, land ownership, approved and proposed developments.
- 2. Attend meetings based on the schedule in Section 7.0.
- 3. Review all relevant past transportation, traffic impact and land use studies within the study area, specifically the Trunk 2/214 study from CBCL.
- 4. Collect all traffic and other data in order to perform required analysis.
- 5. Meet with local municipal planning officials and representatives of the Municipality of East Hants to determine all existing and future development, zoning, and other land use characteristics that may impact future travel demand in the study area.
- 6. For each study horizon/interchange scenario forecast traffic volumes on study area roadways and intersections. Forecasts are to include AM and PM peak hour volumes, including turning movements, at the following intersections:
 - -Rte. 214/Park Rd.
 - -Rte. 214/102 SB Ramp
 - -Rte 214/102 NB Ramp/Mason Lane
 - -Rte. 214/Trunk 2
 - -Trunk 2/ Rte. 277
 - -Trunk 2/ Lantz Interchange Connector
 - -Trunk 2/Old Enfield Road

- -Trunk 2/Shamrock Lane
- -Trunk 2/Alderney Drive
- -Trunk 2/Elmwood Drive
- -Trunk 2/Logan Drive
- -Trunk 2/Church Street
- -Trunk 2/Poplar Drive
- -Trunk 2/Frederick Allen Drive
- -Trunk 2/Milford Road
- All new development intersections on Trunk 2
- -Lantz Interchange Ramp intersections

Estimations of midday peak volumes (11am to 1pm) are also required at all existing unsignalized intersections and any proposed future intersections within the study area.

- 7. Based on projected traffic volumes identify capacity and operational deficiencies along study area roadways and intersections for each horizon. This analysis shall include, but not necessarily be limited to, capacity and level of service assessment, signal warrant analysis, turning lane analysis, and evaluation of the need for a two way left turn lane (TWLTL) on Route 214.
- 8. If signalization is required, the intersection is to be analyzed as both signalized and as a roundabout. Signalized intersection analysis shall be completed using Synchro SimTraffic v11 or newer and roundabout analysis shall be undertaken using Arcady software.
- 9. Appropriate cost-effective roadway upgrading measures, required to mitigate future capacity and/or operational deficiencies, shall be identified for each horizon year. Existing concepts should be evaluated first, and if insufficient additional measures are to be proposed. All recommended upgrading measures shall include conceptual plans and preliminary cost estimates.
- 10. Prepare a final report summarizing all work completed.

5.0 DUTIES OF DPW

- 1. Meet with the Consultant on an arranged schedule.
- 2. Provide the Consultant with any available documentation (reports, studies, plans, traffic data, etc.).
- 3. Answer any questions and provide guidance and clarification in a timely manner as required.

6.0 GUIDANCE

A project steering committee composed of representatives from DPW will be responsible for overall administration of the study. Acceptance and approval of the work will take place after the project steering committee has been satisfied that the study requirements have been met.

7.0 MEETINGS AND REPORTS

The Consultant shall meet with the Project Steering Committee for the project initiation and as required throughout the duration of the project (budget for the initial meeting, one progress meeting and a final report presentation), provide progress reports bi-weekly, and present the study findings to the Project Steering Committee within one week of submission of the draft final report and prior to submission of the Final Report. All meetings will be held in Halifax, Nova Scotia or virtually. The initial meeting with the Consultant will be to review the study requirements, data requirements and the methodologies to be used.

The overall final report shall include, in addition to traffic study findings, the input data use, sensitivity analysis and evaluation. All assumptions shall be fully documented. All reports, in addition to the narrative material, will include sufficient figures and graphic material to provide a clear and concise document. A map showing the location of the highway infrastructure project will be included.

The following reports shall be required:

- One (1) electronic version of the report in PDF format must be submitted for comment and possible amendments before the final version is submitted. The Consultant must be prepared to submit a second draft if requested.
- Two (2) bound copies of the final report. The Consultant shall also have a copy on hand should additional copies be required at short notice. The Consultant shall also provide one (1) electronic copy of the final report in PDF format including all plans, tables, diagrams, figures and pictures.
- All copies of the draft and final reports shall be on letter size paper or 11 x 17 paper folded to letter size and appropriately titled. The final report shall include an executive summary and a list of references. All reports shall contain copies of supporting plans and figures. The Terms of Reference shall be attached as an appendix to the final report.

8.0 STUDY SCHEDULE

The Consultant shall meet with the Project Steering Committee within two weeks of notification of award of contract. The study shall be completed and the required copies of the final report presented within **6 months** of award of contract.

9.0 PROPOSAL REQUIREMENTS

Failure to provide information outlined in this section may result in disqualification.

A PDF copy of your proposal (fax copies are not acceptable) is to be delivered **by 2:00 pm** local time, **Friday May 19th** to Mark Brace (Mark.Brace@novascotia.ca)

One copy of the cost proposal shall be provided as a separate PDF document and attached to the email containing the proposal, including labour costs, related expenses, printing costs and professional services obtained outside of the firm. Prices quoted are to be in Canadian dollars and exclusive of federal and provincial taxes.

Proposals should be clearly marked with the name and address of the proponent and the project or program title. Late proposals will not be accepted and will be returned to the proponent. Proponents are solely responsible for their own expenses in preparing, delivering or presenting a proposal.

To facilitate efficient review of the proposals, proponents are requested to use the following format. The proposal shall be organized into four chapters and such chapters limited where indicated.

1. Introduction

This chapter shall include, but not necessarily be limited to, background information, a description of the study area, and understanding of the project and its objectives, including potential key issues.

2. Qualifications

A summary of project team member experience in areas related to this request for proposals. Including, but not limited to, an outline of each team member's experience, an outline of each team member's technical knowledge and skill relative to this RFP, any relevant background training, and an outline of at least three similar reference projects including the team member's role on the project. The role of each team member in the study shall be clearly explained.

3. Methodology

This chapter shall include, but not necessarily be limited to:

1) A list of all information and data sources available to the Consultant and expected to be used in the Study.

2) A detailed work plan, identifying planned field work, and including intended approach, methodology and schedule for the study.

4. Project Management

The proponent is to produce a detailed schedule in Gantt Chart format showing every anticipated element of the project and how they will fit together with other elements of the project to achieve the required completion dates for all deliverables. The plausibility, accuracy and detail of this schedule will be evaluated.

Number of person-days for each team member by task assigned to the project. For consistency, the basis of remuneration will be per **8 hour day** for all team members.

By submitting a proposal, the proponent warrants that all components required to deliver the services requested have been identified in the proposal or will be provided by the Consultant at no additional charge. The technical proposal must be signed by the person(s) authorized to sign on behalf of the proponent and to bind the proponent to statements made in response to this Request for Proposal.

10.0 LIABILITY FOR ERRORS

While considerable effort to ensure the accuracy of the information in this Request for Proposal has been made, the information contained in this Request for Proposal is supplied solely as a guideline to Proponents. The information is not guaranteed or warranted, nor is it necessarily comprehensive or exhaustive.

11.0 REQUEST FOR PROPOSAL AMENDMENTS

All proponents will be notified regarding any changes made to the Request for Proposal or any appendices or any change in the closing date or time. It is the responsibility of the proponent to ensure they have received all amendments. When these changes occur within five government business days of the close of the proposal, the proposal closing date will be extended to allow for a suitable number of bid preparation days between the issuance of the change and the closing date. All amendments must accompany each proposal. Proposals that do not contain all the amendments may be immediately returned and the proponent eliminated from further consideration.

12.0 PAYMENT SCHEDULE

A lump sum payment for professional services rendered will be made upon completion of work as outlined in the RFP to the satisfaction of the Project Manager and receipt of an invoice detailing work completed.

13.0 EVALUATION OF PROPOSALS

Proposals shall be evaluated based on the "Procurement Process: Architects and Professional Engineering Services" (September 27, 2010).

All proposals will be initially assessed based on the experience and expertise of the project team. Any proposals not meeting minimum qualifications will not be evaluated further.

The criteria for evaluating proposals, based on technical and managerial merit will be the following:

Qualification and experience of team members on similar projects.
 Understanding of project and Proposed methodology
 Quality of the proposal and project management
 points
 points

After meeting initial qualifications, proposals will be evaluated on the basis of their technical and managerial merit and then on the basis of price. The technical submission shall be rated as shown above, out of 85 points, and the remaining 15 points shall be allotted based on price. Only those proposals achieving an aggregate score of 59.5/85 (70%) or greater will have their sealed cost envelopes opened. The lowest price shall be awarded 15 points (all prices within 5% will receive the same price points). The next lowest price (beyond 5%) will receive 12 points. Points for other submissions will be assigned with 3 fewer points for each successively higher priced price proposal. But again, each time the same score will be awarded if successive prices are within 5% of the last highest price. The proposal with the highest total points will be awarded the contract. Proposals not meeting the required 59.5/85 will have their unopened cost envelopes returned.

Notwithstanding the price evaluations, DPW reserves the right to reject any proposal where prices are deemed unreasonable relative to other prices bid, typically a 25% variance from the average qualified bid (excluding the bid in question).

The Department reserves the right to negotiate any or all conditions of the Consultant's proposed work plan and reject all submitted proposals. Unsuccessful proponents may request a debriefing meeting following execution of a contract with the successful proponent.

14.0 CONTRACT PROCEDURES

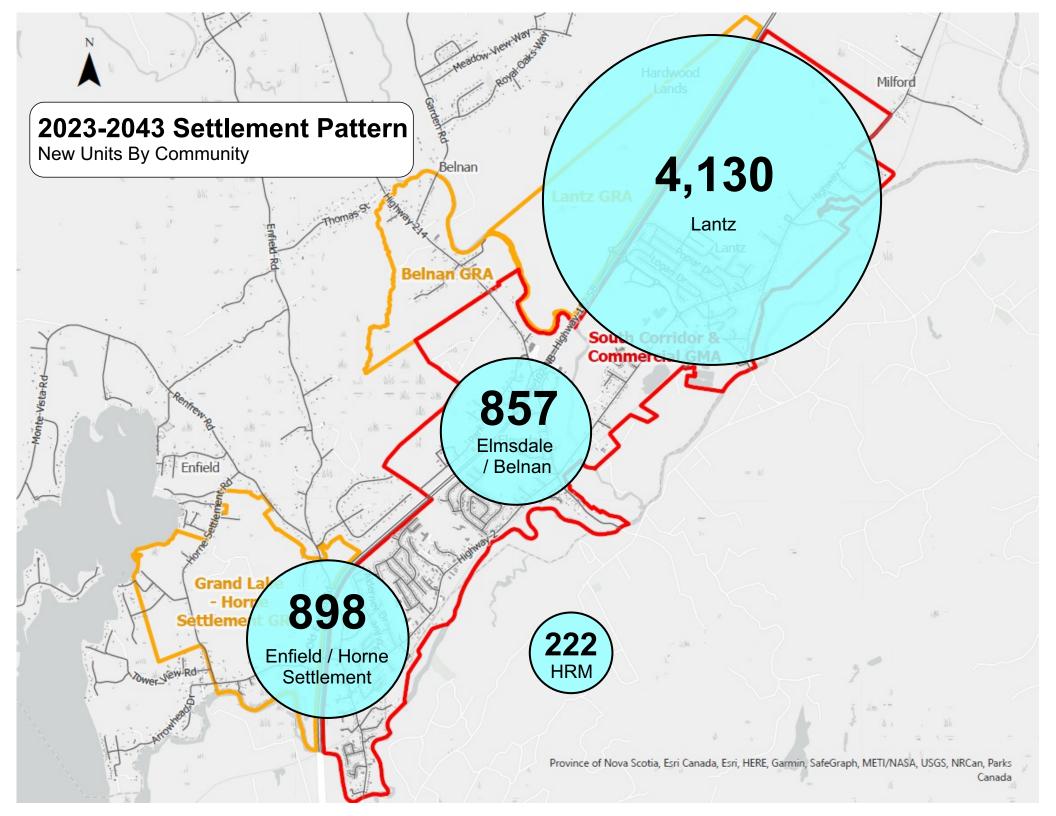
Notice in writing to a proponent of the acceptance of its proposal by the Province will constitute a contract for the goods or services.

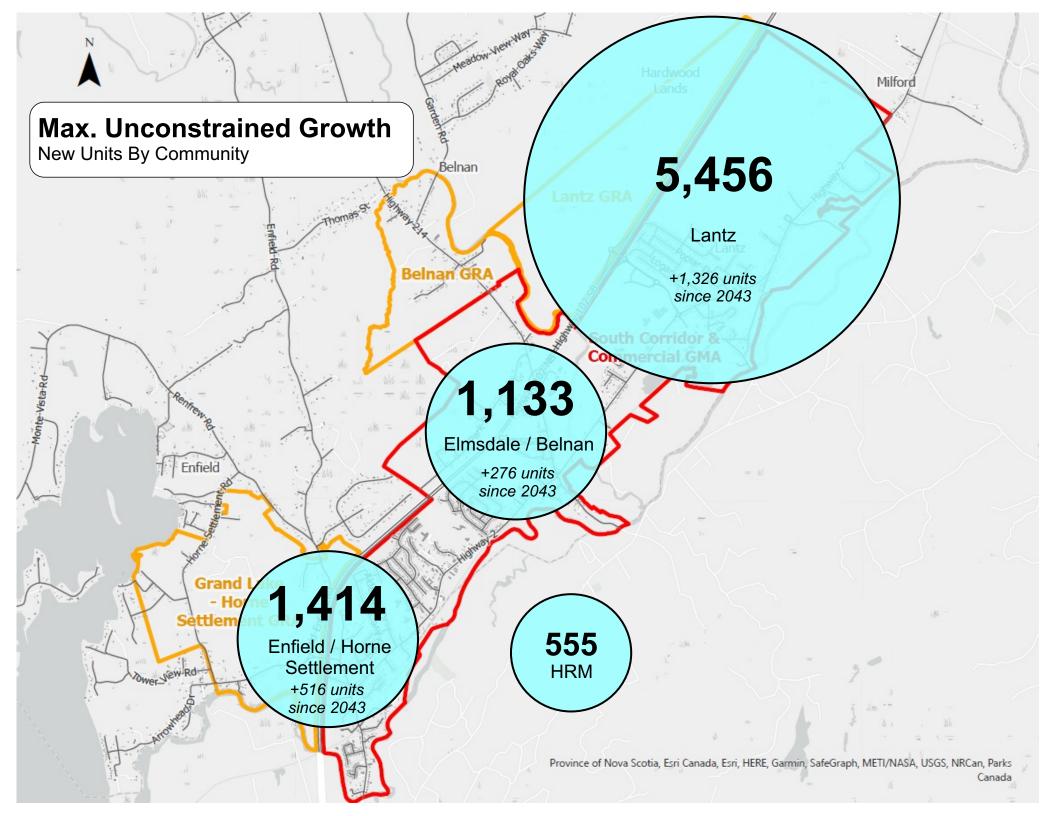
15.0 INQUIRIES

All enquiries related to this Request for Proposal are to be directed to the following person. Information obtained from any other source is not official and may be inaccurate. Enquiries and responses may be recorded and may be distributed to all proponents at the Province's option.

Department Contact:

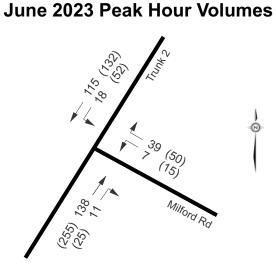
Mark Brace (Mark.Brace@novascotia.ca (902) 424-3278)

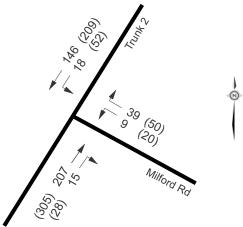

Appendix II


Future Settlement Pattern Summary

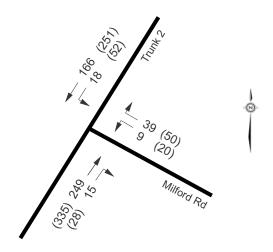
Proposed 2033 and 2043 Growth Scenarios (Source: MEH & HRM Planning Departments)

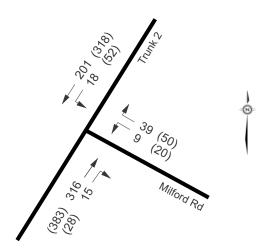
				& HINIVI FIBIIIIII			Total	Commercial	Per	cent Compl	ete By Ho	rizon]
urisdiction	n Sub-Area	Community	in GMA?	Location	Land Use	Type	Res Units	Space	2033	Units	2043	Units	1
MEH	SCC GMA	Lantz	Yes	Tk 2 North	Mixed	Res mix	1550	47,000	25%	394	50%	775	
		Lantz	Yes	Robert Scott	Mixed	Res mix	2205	50,000	50%	1103	75%	1654	
		Lantz	Yes	Lantz Connector	Mixed	Res mix	1500	220,100	75%	1131	100%	1500	
		Lantz	Yes	Mariah Dr	Res	R1's/R2's	104		100%	104	100%	104	
		Lantz	Yes	#161 Rte 277	Res	Multis	16		100%	16	100%	16	
		Lantz	Yes	Acorn Ave	Res	R1's/R2's	81		100%	81	100%	81	
						Sub-Total =	5456	317,100		2829		4130	
		Elmsdale	Yes	#861 Tk 2	Res	R2's	6		100%	6	100%	6	
		Elmsdale	Yes	Rte 214 West	Res	Multis	94		100%	94	100%	94	
		Elmsdale	Yes	Elmwood Dr	Res	R2's & Multis	660		75%	495	75%	495	
		Elmsdale	Yes	Pine Hill Dr	Res	R2's	12		100%	12	100%	12	
		Elmsdale	Yes	#166 Rte 214	Res	Multis	8		100%	8	100%	8	
		Elmsdale	Yes	Rte 214 East	Res	Multis	36		100%	36	100%	36	
		Elmsdale	Yes	Tk 2	Res	Multis	16		100%	16	100%	16	
		Elmsdale	Yes	#553 Tk 2	Res	Multis	58		100%	58	100%	58	
		Elmsdale	Yes	#532 Tk 2	Res	Multis	42		100%	42	100%	42	
		Elmsdale	Yes	Kali Ln	Res	Multis	16		100%	16	100%	16	
						Sub-Total =	948			783		783	
		Enfield	Yes	#450 Tk 2	Res	Multis	126		75%	95	75%	95	
		Enfield	Yes	#432 Tk 2	Res	Multis	40		100%	40	100%	40	
		Enfield	Yes	#429 Tk 2	Res	Multis	84		75%	63	75%	63	
		Enfield	Yes	#428 Tk 2	Res	Multis	62		75%	47	75%	47	
		Enfield	Yes	#410 Tk 2	Res	Multis	70		100%	70	100%	70	
		Enfield	Yes	Dorey Ln	Res	R2's	74		100%	74	100%	74	
		Enfield	Yes	J. Murray Dr	Res	Multis	10		100%	10	100%	10	
		Enfield	Yes	Bakery Ln	Res	Multis	72		100%	72	100%	72	
		Enfield	Yes	Sherwood Park	Res	Multis	56		100%	56	100%	56	
		Enfield	Yes	#159 Tk 2	Res	Multis	72		100%	72	100%	72	
						Sub-Total =	666			599		599	
						GMA Total =	7070			4211		5512	Total forecast units
		COMERCIAL &	COMERCIAL & BUSINESS PARK:			Con	mmercial Space		2033	ft2	2043	ft2	1
		Lantz	No	Exit 8A - West	Comm	-	0	ft2	25%	0	50%	0	ft2
		Elmsdale	Yes	Park Rd	Bus. Park		100	acres	25%	217,800	50%	435,600	ft2 - 20% building coverd
		Elmsdale	Yes	Park Rd	Comm		40,000	ft2	50%	20,000	100%	40,000	ft2
		Liiiisaaic		I dik ita	COIIIII		40,000						ft2
		Flmsdale	Ves	Rte 214 F	Comm		20 000	ft2	50%	10 000			
		Elmsdale Enfield	Yes	Rte 214 E	Comm		20,000	ft2 ft2	50% 50%	10,000	100% 100%	20,000	
		Elmsdale Enfield	Yes Yes	Rte 214 E Tk 2 near Old Enfid			20,000 20,000	ft2 ft2	50% 50%	10,000	100%	20,000	ft2
МЕН	GRA - Horne Settlement					R1's							
МЕН		Enfield Enfield	Yes	Tk 2 near Old Enfid	Comm		20,000	ft2	50%	10,000	100%	20,000	ft2
МЕН	GRA - Horne Settlement GRA - Belnan	Enfield Enfield	Yes	Tk 2 near Old Enfid	Comm		20,000	ft2	50%	10,000	100%	20,000	ft2
МЕН		Enfield Enfield	Yes	Tk 2 near Old Enfid	Comm		20,000	ft2 units	50%	10,000	100%	20,000	ft2 1 units
МЕН	GRA - Belnan	Enfield Enfield - not expected	Yes NO to develop un	Tk 2 near Old Enfid Old Enfield Rd	Res		748	ft2 units	25%	10,000	40%	299	ft2 1 units
МЕН	GRA - Belnan GRA - Lantz	Enfield Enfield - not expected	NO to develop un	Tk 2 near Old Enfield Old Enfield Rd till beyond 2043 plan Exit 8A - West	Res nning horizo	n	748	ft2 units	25%	10,000	100% 40% 75%	20,000	ft2 1 units - ft2
	GRA - Belnan GRA - Lantz Rural Lands	Enfield Enfield - not expected	NO to develop un	Old Enfield Rd till beyond 2043 plan Exit 8A - West Royal Oaks Way	Res Comm Comm Res	n R1's	20,000 748 100,000 185	ft2 units	25% 25% 25%	10,000 187 25,000 46	100% 40% 75% 40%	20,000 299 75,000 74	ft2 1 units - ft2
MEH	GRA - Belnan GRA - Lantz	Enfield Enfield - not expected	NO to develop un	Tk 2 near Old Enfield Old Enfield Rd till beyond 2043 plan Exit 8A - West	Res nning horizo	n	748	ft2 units	25%	10,000	100% 40% 75%	20,000	ft2 1 units - ft2





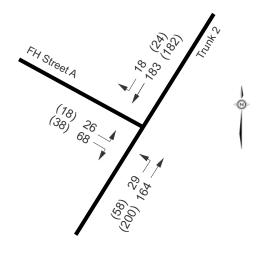
Appendix III


Peak Hour Traffic Volume Diagrams


Legend
70 AM Peak Hour
(36) PM Peak Hour

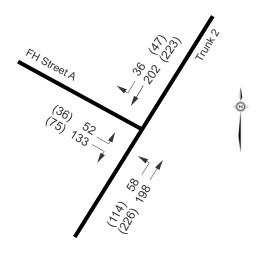
Legend
70 AM Peak Hour
(36) PM Peak Hour

Legend
70 AM Peak Hour
(36) PM Peak Hour

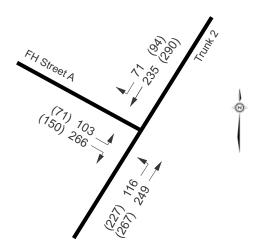


Legend
70 AM Peak Hour
(36) PM Peak Hour

Trunk 2 / FH Street A

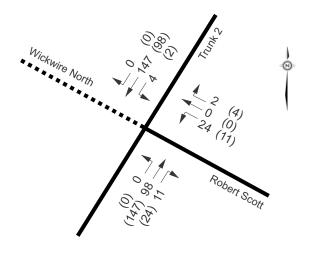

Legend 70 AM Peak Hour (36) PM Peak Hour

2033 Growth - Peak Hour Volumes

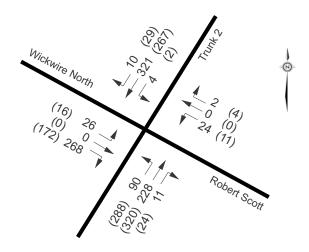


Legend 70 AM Peak Hour (36) PM Peak Hour

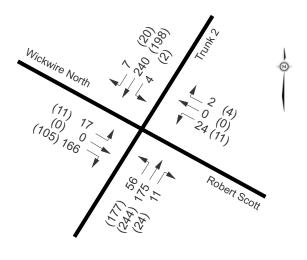
2043 Growth - Peak Hour Volumes


Legend 70 AM Peak Hour (36) PM Peak Hour

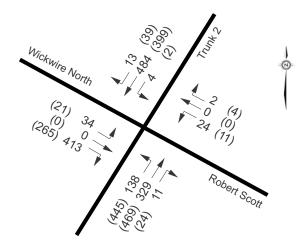
Legend 70 AM Peak Hour (36) PM Peak Hour


Trunk 2 / Robert Scott-Wickwire North

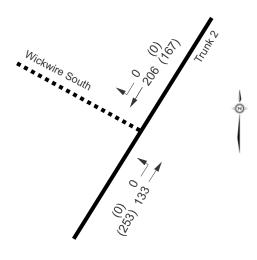
June 2023 Peak Hour Volumes

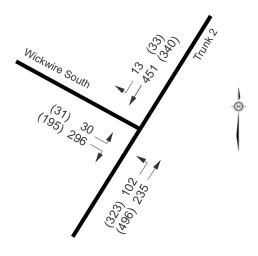

Legend
70 AM Peak Hour
(36) PM Peak Hour

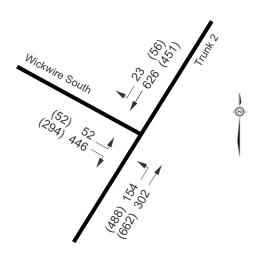
2043 Growth - Peak Hour Volumes

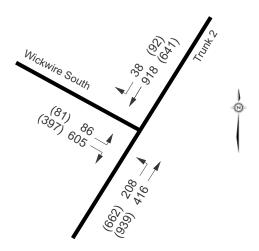


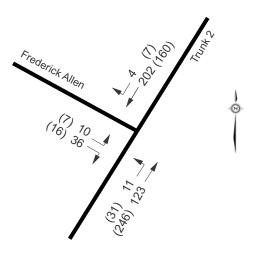
Legend
70 AM Peak Hour
(36) PM Peak Hour

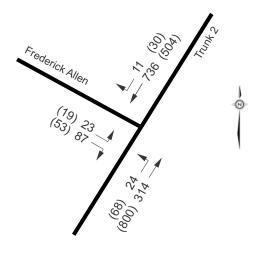

2033 Growth - Peak Hour Volumes

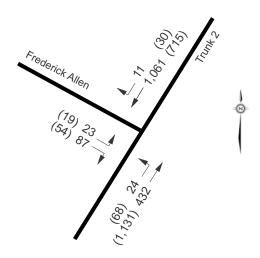

Legend
70 AM Peak Hour
(36) PM Peak Hour

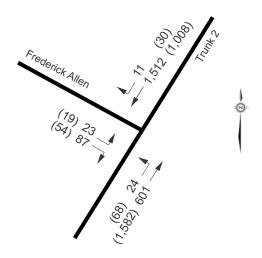

Legend
70 AM Peak Hour
(36) PM Peak Hour

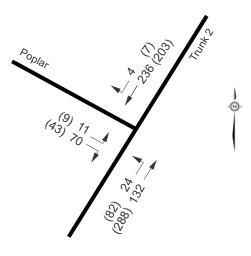

Legend
70 AM Peak Hour
(36) PM Peak Hour

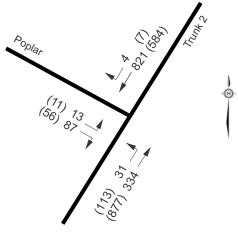

Legend
70 AM Peak Hour
(36) PM Peak Hour

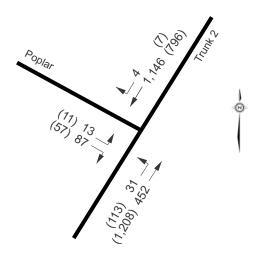

Legend
70 AM Peak Hour
(36) PM Peak Hour

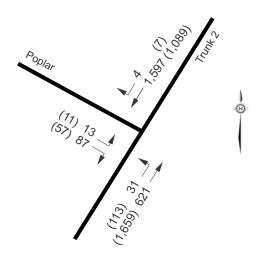

70 AM Peak Hour (36) PM Peak Hour

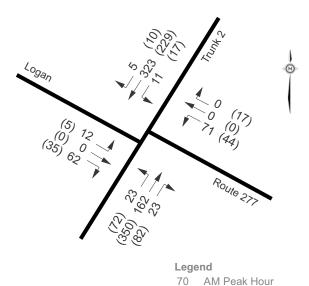

Legend
70 AM Peak Hour
(36) PM Peak Hour


Legend
70 AM Peak Hour
(36) PM Peak Hour

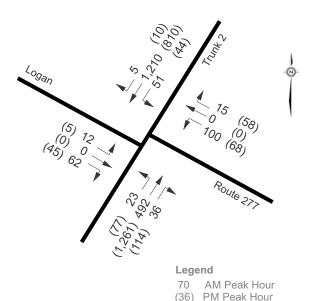

Legend
70 AM Peak Hour
(36) PM Peak Hour


Legend70 AM Peak Hour(36) PM Peak Hour

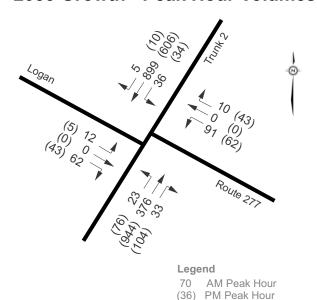

Legend
70 AM Peak Hour
(36) PM Peak Hour

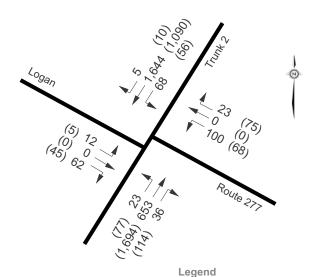

Legend
70 AM Peak Hour
(36) PM Peak Hour

Legend
70 AM Peak Hour
(36) PM Peak Hour

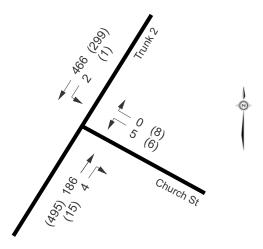


To AM Peak Hour (36) PM Peak Hour

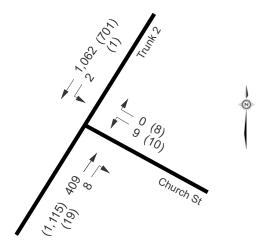



(36) PM Peak Hour

2043 Growth - Peak Hour Volumes

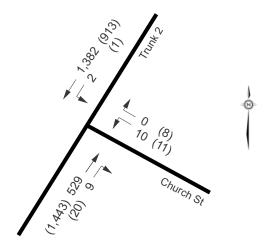


2033 Growth - Peak Hour Volumes


70 AM Peak Hour (36) PM Peak Hour

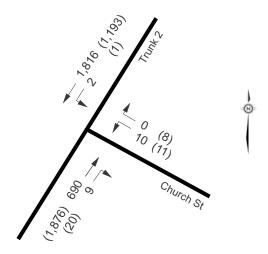
Legend

70 AM Peak Hour (36) PM Peak Hour

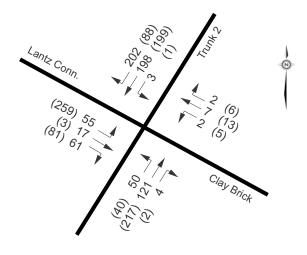

2033 Growth - Peak Hour Volumes

Legend

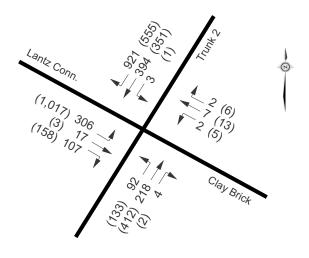
70 AM Peak Hour (36) PM Peak Hour


2043 Growth - Peak Hour Volumes

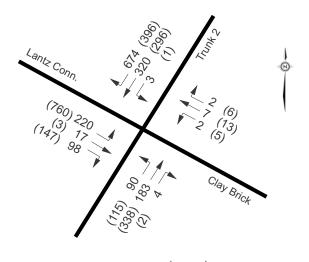
Legend


70 AM Peak Hour (36) PM Peak Hour

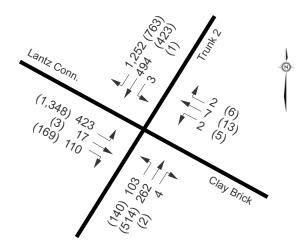
Unconstrained Growth - Peak Hour Volumes


Legend

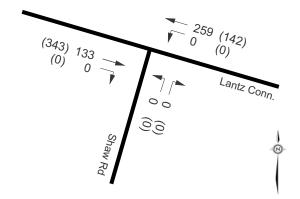
70 AM Peak Hour (36) PM Peak Hour


Legend
70 AM Peak Hour
(36) PM Peak Hour

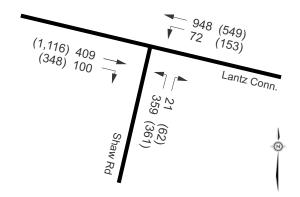
2043 Growth - Peak Hour Volumes



Legend
70 AM Peak Hour
(36) PM Peak Hour

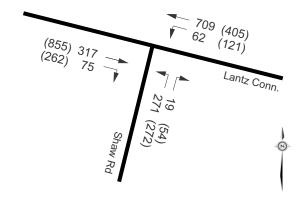

2033 Growth - Peak Hour Volumes

Legend
70 AM Peak Hour
(36) PM Peak Hour


Legend70 AM Peak Hour(36) PM Peak Hour

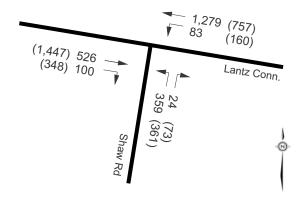
Legend

70 AM Peak Hour (36) PM Peak Hour

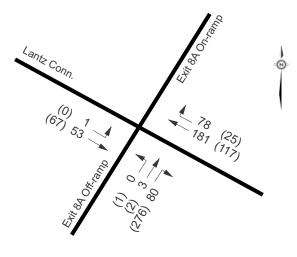

2043 Growth - Peak Hour Volumes

Legend

70 AM Peak Hour (36) PM Peak Hour

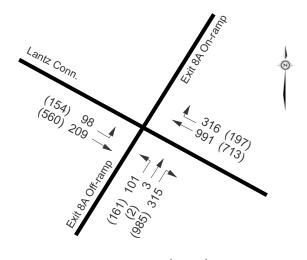

2033 Growth - Peak Hour Volumes

Legend

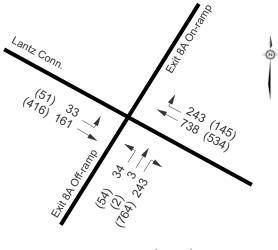

70 AM Peak Hour (36) PM Peak Hour

Unconstrained Growth - Peak Hour Volumes

Legend

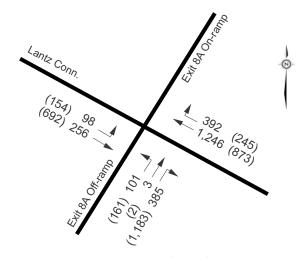

70 AM Peak Hour (36) PM Peak Hour

Legend

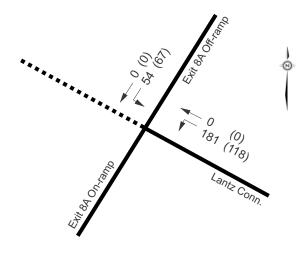

70 AM Peak Hour (36) PM Peak Hour

2043 Growth - Peak Hour Volumes

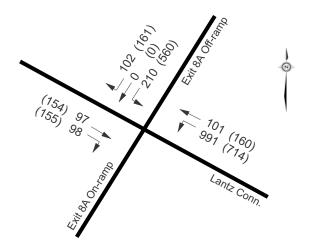
Legend
70 AM Peak Hour
(36) PM Peak Hour


2033 Growth - Peak Hour Volumes

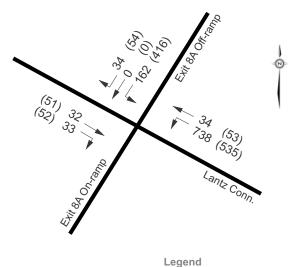
Legend


70 AM Peak Hour (36) PM Peak Hour

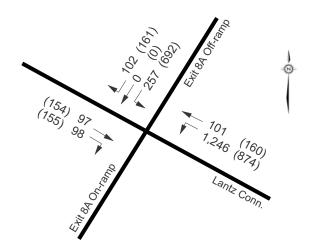
Unconstrained Growth - Peak Hour Volumes


Legend

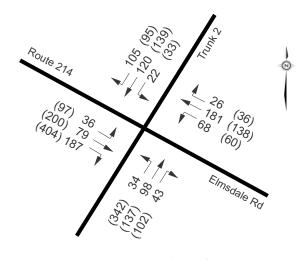
70 AM Peak Hour (36) PM Peak Hour


Legend
70 AM Peak Hour
(36) PM Peak Hour

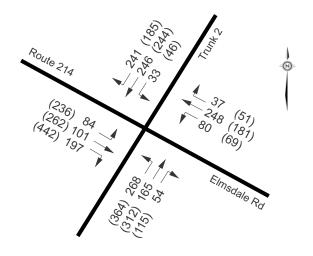
2043 Growth - Peak Hour Volumes



Legend70 AM Peak Hour(36) PM Peak Hour


2033 Growth - Peak Hour Volumes

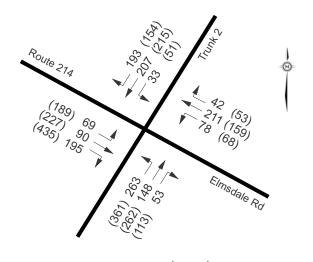
70 AM Peak Hour (36) PM Peak Hour



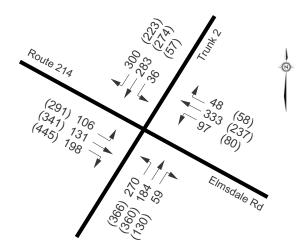
Legend
70 AM Peak Hour
(36) PM Peak Hour

Legend
70 AM Peak Hour
(36) PM Peak Hour

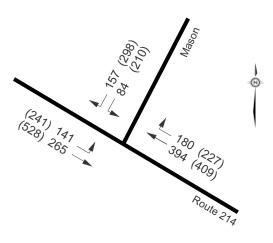
2043 Growth - Peak Hour Volumes

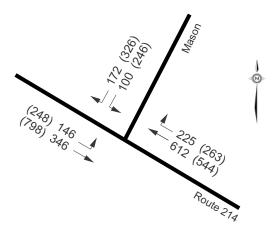


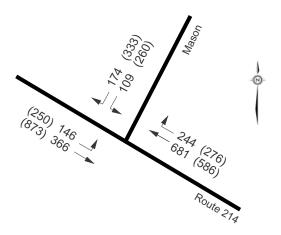
Legend

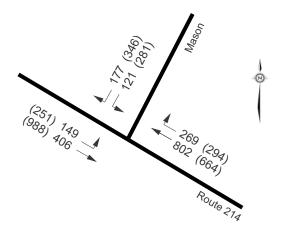

70 AM Peak Hour

(36) PM Peak Hour


2033 Growth - Peak Hour Volumes

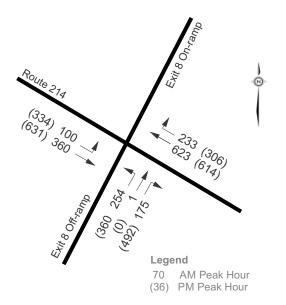

Legend
70 AM Peak Hour
(36) PM Peak Hour

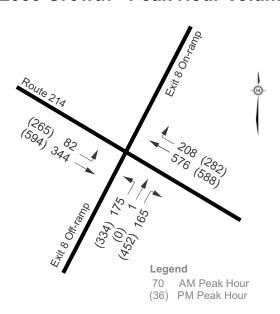

Legend
70 AM Peak Hour
(36) PM Peak Hour

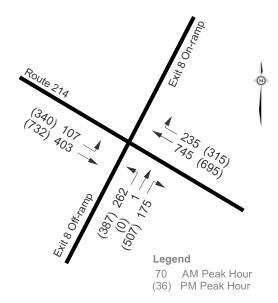

Legend
70 AM Peak Hour
(36) PM Peak Hour

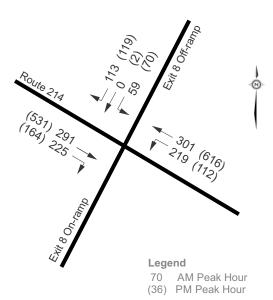
To AM Peak Hour (36) PM Peak Hour

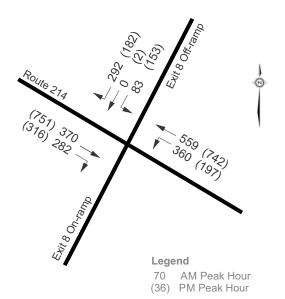

Legend
70 AM Peak Hour
(36) PM Peak Hour

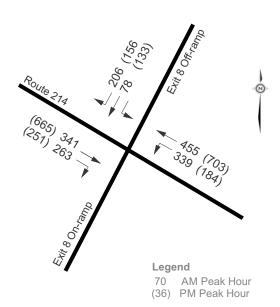


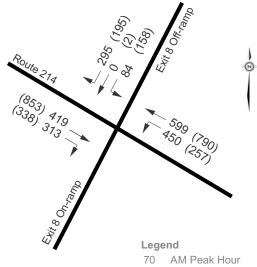

Legend

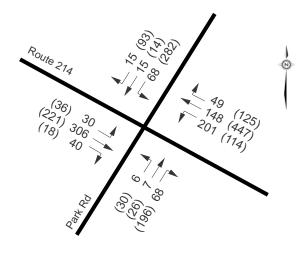

70 AM Peak Hour

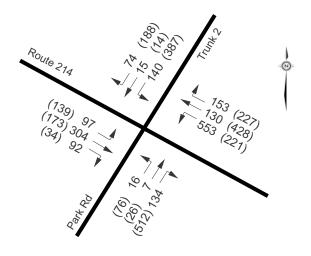

(36) PM Peak Hour









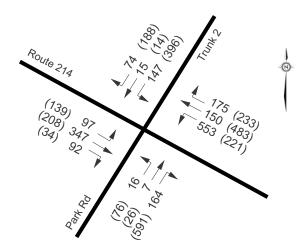


70 AM Peak Hour (36) PM Peak Hour

Legend
70 AM Peak Hour
(36) PM Peak Hour

2043 Growth - Peak Hour Volumes

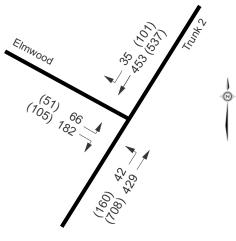
Legend


70 AM Peak Hour

(36) PM Peak Hour

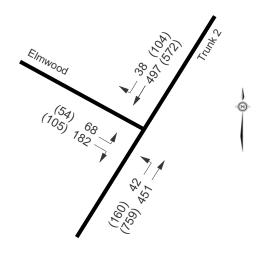
2033 Growth - Peak Hour Volumes

70 AM Peak Hour (36) PM Peak Hour

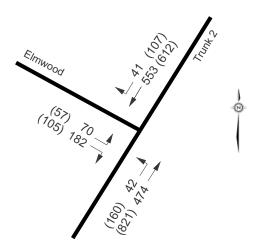


Legend
70 AM Peak Hour
(36) PM Peak Hour

Elmwood (43) 58 (868) (8

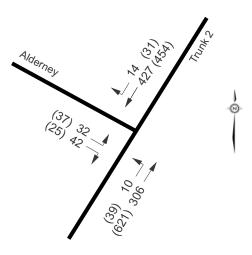

June 2023 Peak Hour Volumes

Legend
70 AM Peak Hour
(36) PM Peak Hour

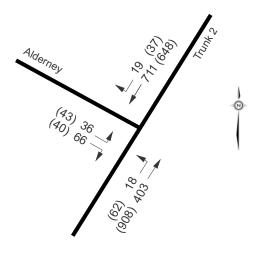


Legend
70 AM Peak Hour
(36) PM Peak Hour

2043 Growth - Peak Hour Volumes

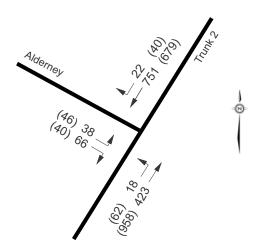


Legend
70 AM Peak Hour
(36) PM Peak Hour

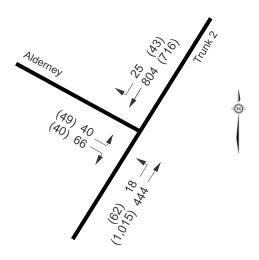


Legend

70 AM Peak Hour
(36) PM Peak Hour

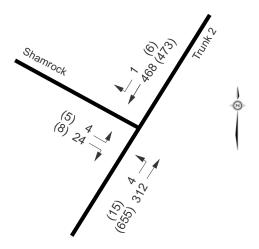


Legend
70 AM Peak Hour
(36) PM Peak Hour

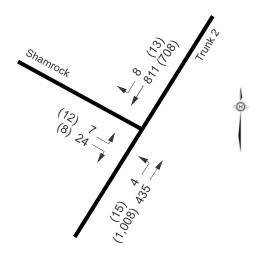


Legend70 AM Peak Hour(36) PM Peak Hour

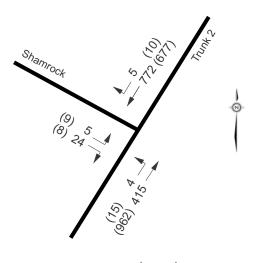
2043 Growth - Peak Hour Volumes



Legend
70 AM Peak Hour
(36) PM Peak Hour


Legend
70 AM Peak Hour
(36) PM Peak Hour

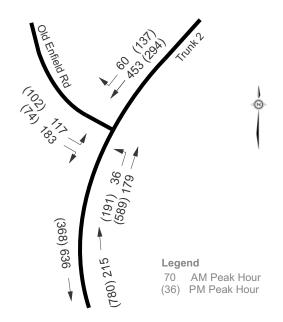
June 2023 Peak Hour Volumes


Legend
70 AM Peak Hour
(36) PM Peak Hour

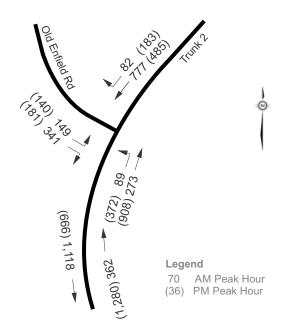
2043 Growth - Peak Hour Volumes

Legend
70 AM Peak Hour
(36) PM Peak Hour

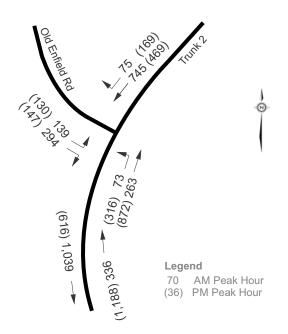
2033 Growth - Peak Hour Volumes

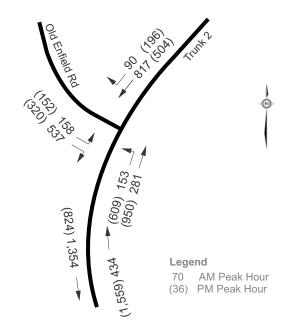


Legend70 AM Peak Hour(36) PM Peak Hour



70 AM Peak Hour (36) PM Peak Hour

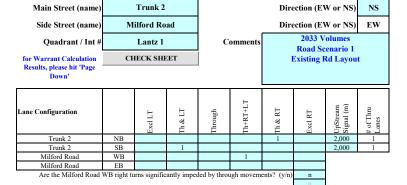

June 2023 Peak Hour Volumes



2043 Growth - Peak Hour Volumes

2033 Growth - Peak Hour Volumes

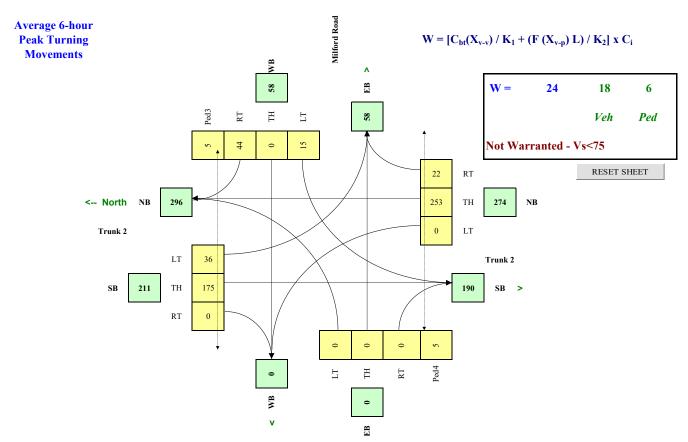
Appendix IV


TAC Traffic Signal Warrant Results

Traffic Signal Warrant Results - Option 1 Road Network

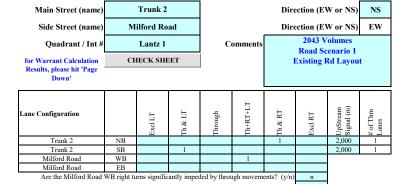
Existing Stop-controlled intersections only

				Option 1 - Ex	kisting Roads
				Equilibrium	Assignment
Community	No.	Main Road Secondary Road		2033	2043
	1	Trunk 2	Milford Rd	24	25
	2	Trunk 2	FH Street A	20	43
	3	Trunk 2	Wickwire North	38	76
	4	Trunk 2	Wickwire South	131	266
	5	Trunk 2	Frederick Allen	67	94
Lantz	6	Trunk 2	Poplar	72	98
Laiitz	7	Trunk 2	Rte 277 / Logan	128	194
	8	Trunk 2	Church	27	36
	9	Trunk 2	Lantz Connector	Roundabout	Roundabout
	10	Lantz Connector	Shaw Dr	Roundabout	Roundabout
	11	Lantz Connector	Hwy 102 NB Ramps	Roundabout	Roundabout
	12	Lantz Connector	Hwy 102 SB Ramps	Roundabout	Roundabout
	13	Route 214	Trunk 2	Signals	Signals
	14	Route 214	Mason Dr	Signals	Signals
Elmsdale	15	Route 214	Hwy 102 NB Ramps	Signals	Signals
	16	Route 214	Hwy 102 SB Ramps	244	266
	17	Route 214	Park Rd	Signals	Signals
	18	Trunk 2	Elmwood	124	135
Enfield	19	Trunk 2	Alderney	83	89
Lilleid	20	Trunk 2	Shamrock	33	37
	21	Trunk 2	Old Enfield Rd	272	323



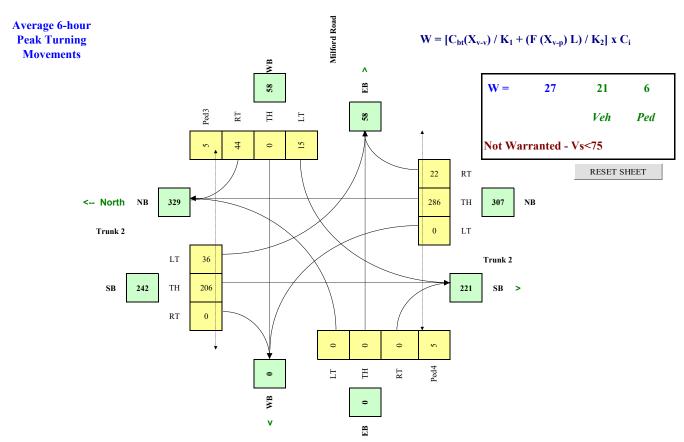
Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)

Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n


O	ther input		Speed	Truck	Bus Rt	Median
			(Km/h)	%	(y/n)	(m)
	Trunk 2	NS	60	5.0%	n	0.0
Г	Milford Road	EW		5.0%	n	

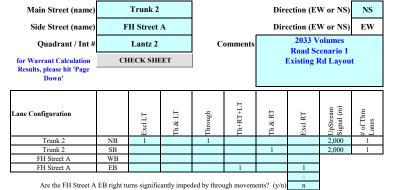
Set Peak Hours													Ped1	Ped2	Ped3	Ped4
Traffic Input	NB			SB		WB		EB			NS	NS	EW	EW		
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	0	275	20	24	194	0	12	0	52	0	0	0	5	5	5	5
8:00 - 9:00	0	207	15	18	146	0	9	0	39	0	0	0	5	5	5	5
12:00 - 13:00	0	213	20	36	146	0	14	0	35	0	0	0	5	5	5	5
13:00 - 14:00	0	229	21	39	157	0	15	0	38	0	0	0	5	5	5	5
16:00 - 17:00	0	305	28	52	209	0	20	0	50	0	0	0	5	5	5	5
17:00 - 18:00	0	286	26	49	196	0	19	0	47	0	0	0	5	5	5	5
Total (6-hour peak)	0	1,515	130	218	1,048	0	89	0	261	0	0	0	30	30	30	30
Average (6-hour peak)	0	253	22	36	175	0	15	0	44	0	0	0	5	5	5	5

Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada



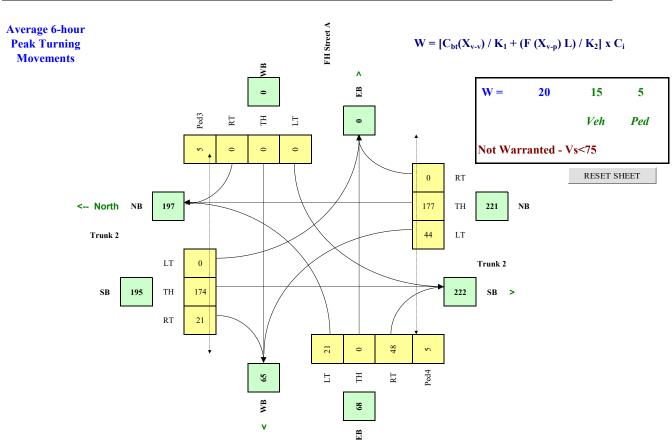
Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)

Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n


Other input		Speed	Truck	Bus Rt	Median
		(Km/h)	%	(y/n)	(m)
Trunk 2	NS	60	5.0%	n	0.0
Milford Road	EW		5.0%	n	

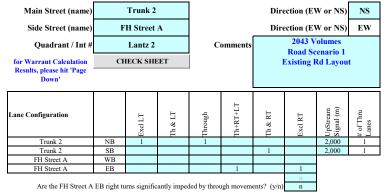
Set Peak Hours											Ped1	Ped2	Ped3	Ped4		
Traffic Input		NB		SB		WB		EB			NS	NS	EW	EW		
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	0	330	20	24	220	0	12	0	52	0	0	0	5	5	5	5
8:00 - 9:00	0	249	15	18	166	0	9	0	39	0	0	0	5	5	5	5
12:00 - 13:00	0	234	20	36	175	0	14	0	35	0	0	0	5	5	5	5
13:00 - 14:00	0	251	21	39	188	0	15	0	38	0	0	0	5	5	5	5
16:00 - 17:00	0	335	28	52	251	0	20	0	50	0	0	0	5	5	5	5
17:00 - 18:00	0	314	26	49	235	0	19	0	47	0	0	0	5	5	5	5
Total (6-hour peak)	0	1,713	130	218	1,235	0	89	0	261	0	0	0	30	30	30	30
Average (6-hour peak)	0	286	22	36	206	0	15	0	44	0	0	0	5	5	5	5

Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada



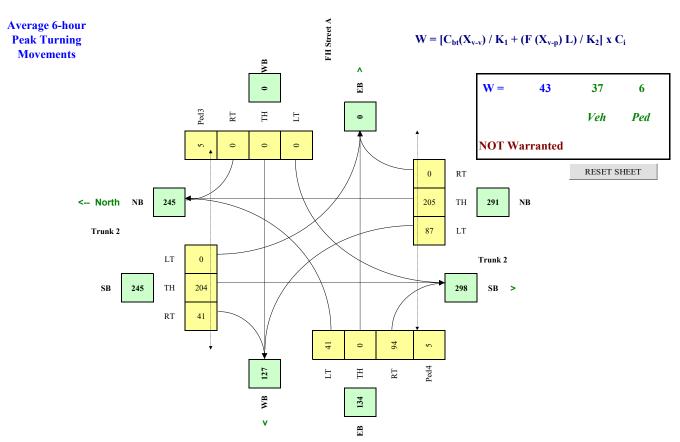
NSDPW
Mun. of East Hants
Dec 2023
June 2023
(yyyy-mm-dd)

Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n


Other input		Speed (Km/h)	Truck %	Bus Rt (y/n)	Median (m)
Trunk 2	NS	60	5.0%	n	0.0
FH Street A	EW		5.0%	n	

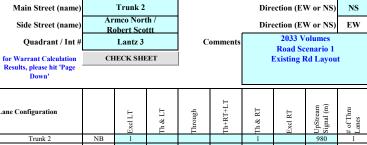
Set Peak Hours													Ped1	Ped2	Ped3	Ped4
Traffic Input	NB SB						WB			EB N		NS	NS	EW	EW	
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	39	218	0	0	243	24	0	0	0	35	0	90	5	5	5	5
8:00 - 9:00	29	164	0	0	183	18	0	0	0	26	0	68	5	5	5	5
12:00 - 13:00	40	139	0	0	127	17	0	0	0	13	0	26	5	5	5	5
13:00 - 14:00	44	150	0	0	137	18	0	0	0	14	0	29	5	5	5	5
16:00 - 17:00	58	200	0	0	182	24	0	0	0	18	0	38	5	5	5	5
17:00 - 18:00	54	188	0	0	171	23	0	0	0	17	0	36	5	5	5	5
Total (6-hour peak)	264	1,059	0	0	1,043	124	0	0	0	123	0	287	30	30	30	30
Average (6-hour peak)	44	177	0	0	174	21	0	0	0	21	0	48	5	5	5	5

Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada



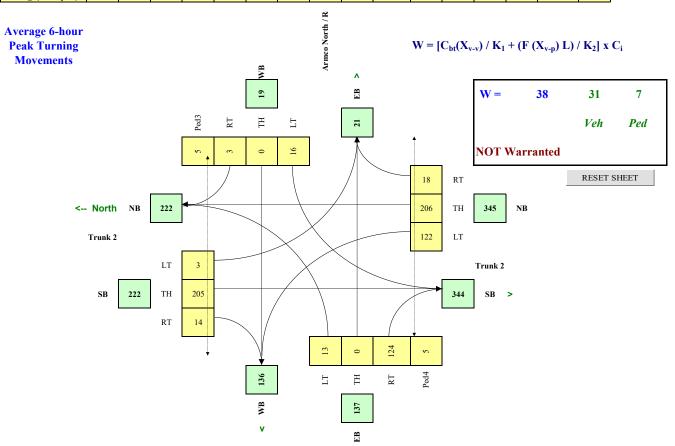
Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)

Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n


Other input		Speed (Km/h)	Truck %	Bus Rt (y/n)	Median (m)
Trunk 2	NS	60	5.0%	n	0.0
FH Street A	EW		5.0%	n	

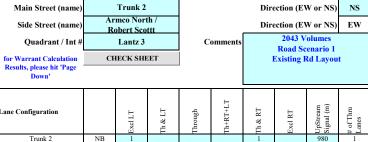
Set Peak Hours													Ped1	Ped2	Ped3	Ped4
Traffic Input	NB SB							WB			EB NS		NS	NS	EW	EW
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	77	263	0	0	269	48	0	0	0	69	0	177	5	5	5	5
8:00 - 9:00	58	198	0	0	202	36	0	0	0	52	0	133	5	5	5	5
12:00 - 13:00	79	158	0	0	155	33	0	0	0	25	0	52	5	5	5	5
13:00 - 14:00	86	170	0	0	167	35	0	0	0	27	0	56	5	5	5	5
16:00 - 17:00	114	226	0	0	223	47	0	0	0	36	0	75	5	5	5	5
17:00 - 18:00	107	212	0	0	209	44	0	0	0	34	0	70	5	5	5	5
Total (6-hour peak)	521	1,227	0	0	1,225	243	0	0	0	243	0	563	30	30	30	30
Average (6-hour peak)	87	205	0	0	204	41	0	0	0	41	0	94	5	5	5	5

Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada


Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)

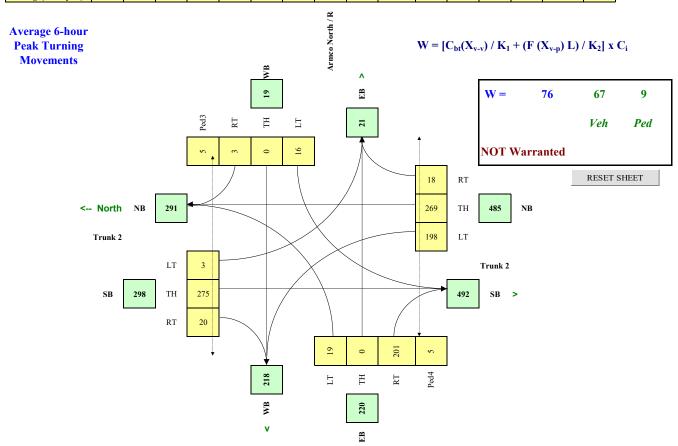
Lane Configuration		ExclLT	тл & пт	Through	Th+RT+LT	Th & RT	Excl RT	UpStream Signal (m)	# of Thru Lanes
Trunk 2	NB	1				1		980	1
Trunk 2	SB	1				1		2,000	1
Armco North / Robert Scottt	WB				1				
Armco North / Robert Scottt	EB				1		1		
Armco North / Robert Scottt W	mco North / Robert Scottt WB right turns significantly impeded by through movements? (y/n)								
Armco North / Robert Scottt E	B right turn	s significar	tly impede	d by throug	h movemen	ts? (y/n)	n		

Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n


Other input		Speed	Truck	Bus Rt	Median
		(Km/h)	%	(y/n)	(m)
Trunk 2	NS	60	5.0%	n	0.0
Armco North / Robert Scottt	EW		5.0%	n	

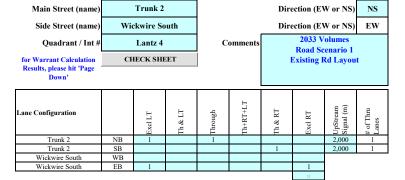
Set Peak Hours													Ped1	Ped2	Ped3	Ped4
Traffic Input		NB			SB			WB			EB		NS	NS	EW	EW
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	74	233	15	5	319	9	32	0	3	23	0	221	5	5	5	5
8:00 - 9:00	56	175	11	4	240	7	24	0	2	17	0	166	5	5	5	5
12:00 - 13:00	123	170	17	1	138	14	8	0	3	8	0	73	5	5	5	5
13:00 - 14:00	133	183	18	2	149	15	8	0	3	8	0	79	5	5	5	5
16:00 - 17:00	177	244	24	2	198	20	11	0	4	11	0	105	5	5	5	5
17:00 - 18:00	166	229	23	2	186	19	10	0	4	10	0	98	5	5	5	5
Total (6-hour peak)	729	1,234	108	16	1,230	84	93	0	19	77	0	742	30	30	30	30
Average (6-hour peak)	122	206	18	3	205	14	16	0	3	13	0	124	5	5	5	5

Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada


Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)

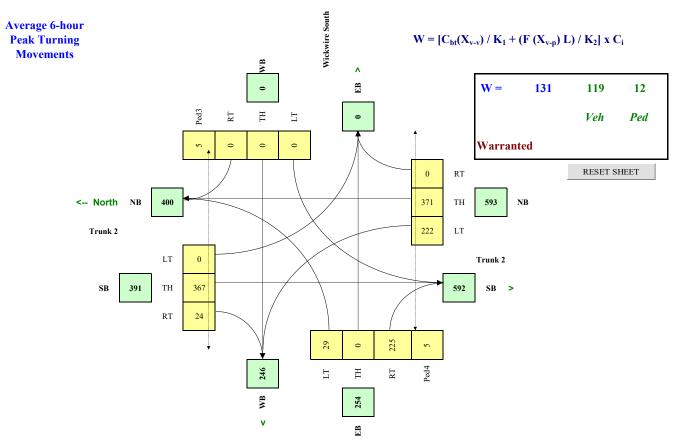
Lane Configuration		Excl LT	Th & LT	Through	Th+RT+LT	Th & RT	Excl RT	UpStream Signal (m)	# of Thru Lanes
Trunk 2	NB	1				1		980	1
Trunk 2	SB	1				1		2,000	1
Armco North / Robert Scottt	WB				1				
Armco North / Robert Scottt	EB				1		1		
Armco North / Robert Scottt W							n		
Armco North / Robert Scottt E	B right turn	ns significar	ntly impede	d by throug	h movemen	ts? (y/n)	n		

Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n

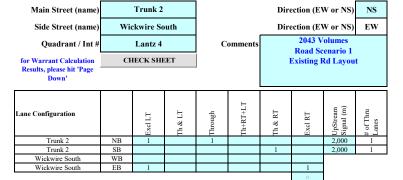

Other input		Speed (Km/h)	Truck %	Bus Rt (y/n)	Median (m)
Trunk 2	NS	60	5.0%	n	0.0
Armco North / Robert Scottt	EW		5.0%	n	

Set Peak Hours													Ped1	Ped2	Ped3	Ped4
Traffic Input		NB			SB			WB			EB		NS	NS	EW	EW
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	120	303	15	5	427	13	32	0	3	35	0	356	5	5	5	5
8:00 - 9:00	90	228	11	4	321	10	24	0	2	26	0	268	5	5	5	5
12:00 - 13:00	201	223	17	1	186	20	8	0	3	11	0	120	5	5	5	5
13:00 - 14:00	216	240	18	2	200	22	8	0	3	12	0	129	5	5	5	5
16:00 - 17:00	288	320	24	2	267	29	11	0	4	16	0	172	5	5	5	5
17:00 - 18:00	270	300	23	2	250	27	10	0	4	15	0	161	5	5	5	5
Total (6-hour peak)	1,185	1,614	108	16	1,651	121	93	0	19	115	0	1,206	30	30	30	30
Average (6-hour peak)	198	269	18	3	275	20	16	0	3	19	0	201	5	5	5	5

Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada



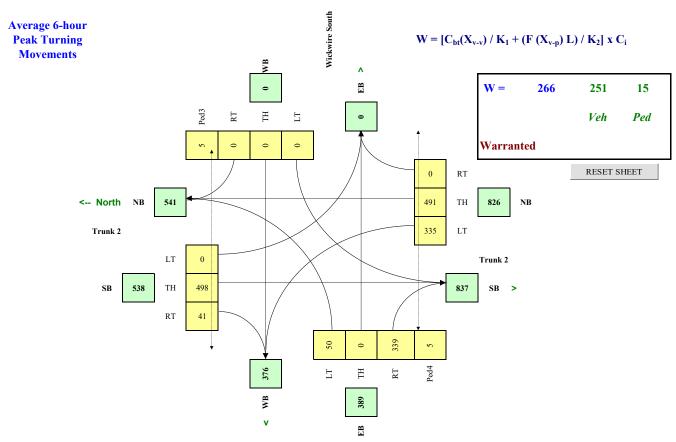
Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)


Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n

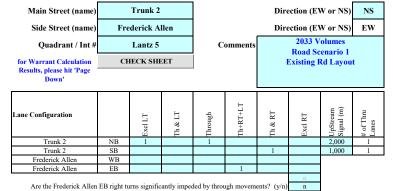
Other input		Speed	Truck	Bus Rt	Median
		(Km/h)	%	(y/n)	(m)
Trunk 2	NS	60	5.0%	n	0.0
Wickwire South	FW		5.0%	n	

Set Peak Hours						•							Ped1	Ped2	Ped3	Ped4
Traffic Input		NB			SB			WB			EB		NS	NS	EW	EW
-	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	136	313	0	0	600	17	0	0	0	40	0	394	5	5	5	5
8:00 - 9:00	102	235	0	0	451	13	0	0	0	30	0	296	5	5	5	5
12:00 - 13:00	225	346	0	0	237	23	0	0	0	22	0	136	5	5	5	5
13:00 - 14:00	242	372	0	0	255	25	0	0	0	23	0	146	5	5	5	5
16:00 - 17:00	323	496	0	0	340	33	0	0	0	31	0	195	5	5	5	5
17:00 - 18:00	303	465	0	0	319	31	0	0	0	29	0	183	5	5	5	5
Total (6-hour peak)	1,331	2,227	0	0	2,202	142	0	0	0	175	0	1,350	30	30	30	30
Average (6-hour peak)	222	371	0	0	367	24	0	0	0	29	0	225	5	5	5	5

Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada

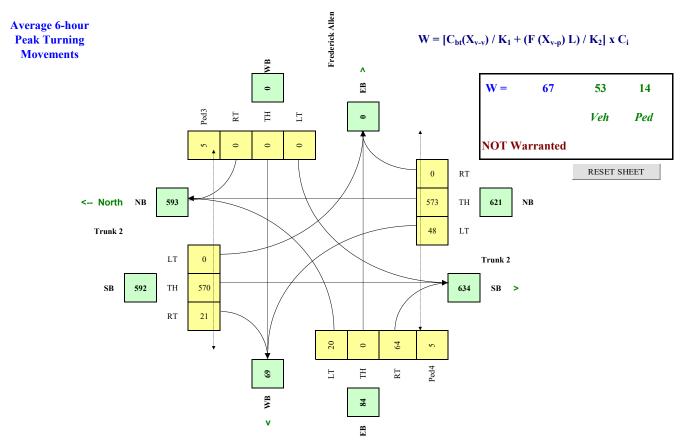


Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)


Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n

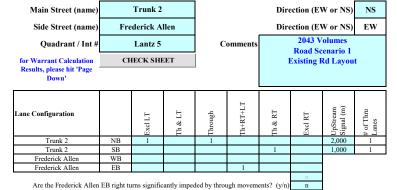
Other input		Speed	Truck	Bus Rt	Median
		(Km/h)	%	(y/n)	(m)
Trunk 2	NS	60	5.0%	n	0.0
Wickwire South	FW		5.0%	n	

Set Peak Hours						•							Ped1	Ped2	Ped3	Ped4
Traffic Input		NB			SB			WB			EB		NS	NS	EW	EW
-	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	205	402	0	0	833	31	0	0	0	69	0	593	5	5	5	5
8:00 - 9:00	154	302	0	0	626	23	0	0	0	52	0	446	5	5	5	5
12:00 - 13:00	340	462	0	0	314	39	0	0	0	36	0	205	5	5	5	5
13:00 - 14:00	366	497	0	0	338	42	0	0	0	39	0	221	5	5	5	5
16:00 - 17:00	488	662	0	0	451	56	0	0	0	52	0	294	5	5	5	5
17:00 - 18:00	458	621	0	0	423	53	0	0	0	49	0	276	5	5	5	5
Total (6-hour peak)	2,011	2,946	0	0	2,985	244	0	0	0	297	0	2,035	30	30	30	30
Average (6-hour peak)	335	491	0	0	498	41	0	0	0	50	0	339	5	5	5	5



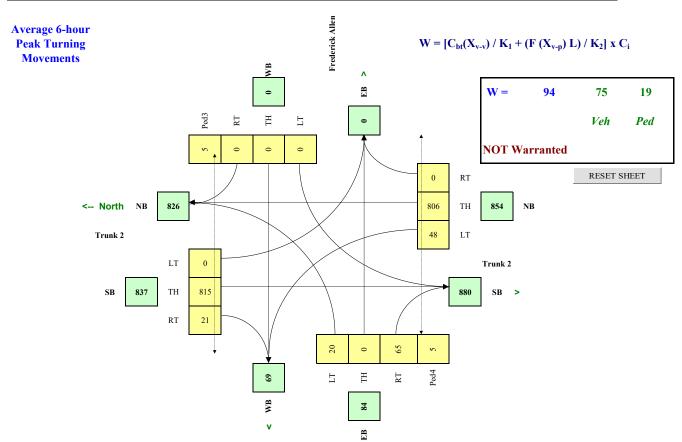
Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)

Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n


Other input		Speed (Km/h)	Truck %	Bus Rt (y/n)	Median (m)
Trunk 2	NS	60	5.0%	n	0.0
Frederick Allen	EW		5.0%	n	

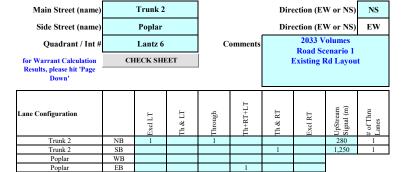
Set Peak Hours													Ped1	Ped2	Ped3	Ped4
Traffic Input		NB			SB			WB			EB		NS	NS	EW	EW
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	32	418	0	0	979	15	0	0	0	31	0	116	5	5	5	5
8:00 - 9:00	24	314	0	0	736	11	0	0	0	23	0	87	5	5	5	5
12:00 - 13:00	47	558	0	0	351	21	0	0	0	13	0	37	5	5	5	5
13:00 - 14:00	51	600	0	0	378	23	0	0	0	14	0	40	5	5	5	5
16:00 - 17:00	68	800	0	0	504	30	0	0	0	19	0	53	5	5	5	5
17:00 - 18:00	64	750	0	0	473	28	0	0	0	18	0	50	5	5	5	5
Total (6-hour peak)	286	3,440	0	0	3,421	128	0	0	0	118	0	383	30	30	30	30
Average (6-hour peak)	48	573	0	0	570	21	0	0	0	20	0	64	5	5	5	5

Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada



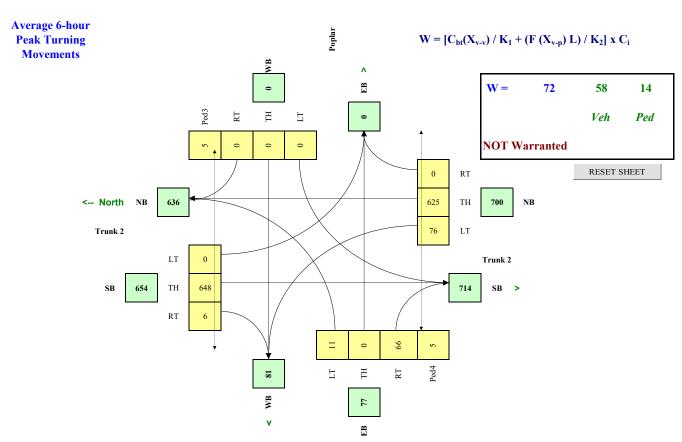
Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)

Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n


Other input		Speed	Truck	Bus Rt	Median
		(Km/h)	%	(y/n)	(m)
Trunk 2	NS	60	5.0%	n	0.0
Frederick Allen	EW		5.0%	n	

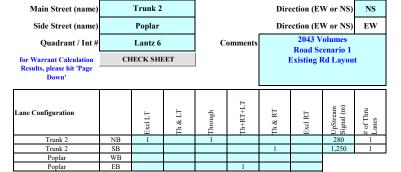
Set Peak Hours													Ped1	Ped2	Ped3	Ped4
Traffic Input		NB			SB			WB			EB		NS	NS	EW	EW
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	32	575	0	0	1411	15	0	0	0	31	0	116	5	5	5	5
8:00 - 9:00	24	432	0	0	1061	11	0	0	0	23	0	87	5	5	5	5
12:00 - 13:00	47	789	0	0	498	21	0	0	0	13	0	38	5	5	5	5
13:00 - 14:00	51	848	0	0	536	23	0	0	0	14	0	41	5	5	5	5
16:00 - 17:00	68	1131	0	0	715	30	0	0	0	19	0	54	5	5	5	5
17:00 - 18:00	64	1061	0	0	671	28	0	0	0	18	0	51	5	5	5	5
Total (6-hour peak)	286	4,836	0	0	4,892	128	0	0	0	118	0	387	30	30	30	30
Average (6-hour peak)	48	806	0	0	815	21	0	0	0	20	0	65	5	5	5	5

Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada



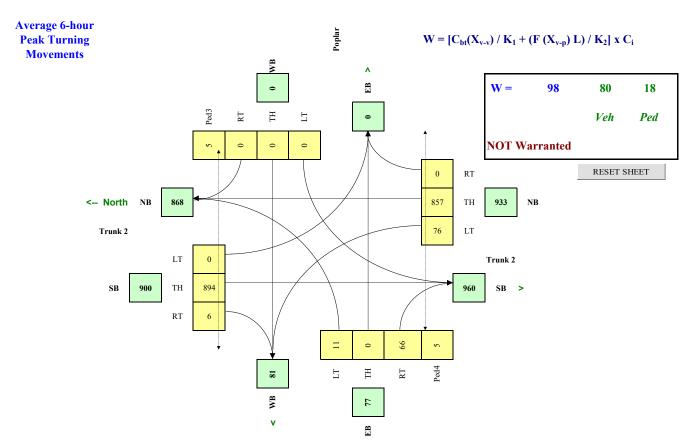
Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)

Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(v/n)	n


Are the Popla	ar EB right to	ırns signific	antly imped	ded by thro	ıgh movem	ents? (y/n)
Other input		Speed (Km/h)	Truck	Bus Rt (v/n)	Median (m)	
Trunk 2	NS	60	5.0%	n (y/II)	0.0	
Donlar	EW		5.09/-			ī

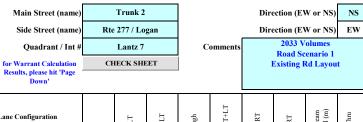
Set Peak Hours													Ped1	Ped2	Ped3	Ped4
Traffic Input		NB			SB			WB			EB		NS	NS	EW	EW
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	41	444	0	0	1092	5	0	0	0	17	0	116	5	5	5	5
8:00 - 9:00	31	334	0	0	821	4	0	0	0	13	0	87	5	5	5	5
12:00 - 13:00	79	611	0	0	407	5	0	0	0	8	0	39	5	5	5	5
13:00 - 14:00	85	658	0	0	438	5	0	0	0	8	0	42	5	5	5	5
16:00 - 17:00	113	877	0	0	584	7	0	0	0	11	0	56	5	5	5	5
17:00 - 18:00	106	823	0	0	548	7	0	0	0	10	0	53	5	5	5	5
Total (6-hour peak)	455	3,747	0	0	3,890	33	0	0	0	67	0	393	30	30	30	30
Average (6-hour peak)	76	625	0	0	648	6	0	0	0	11	0	66	5	5	5	5

Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada


Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)

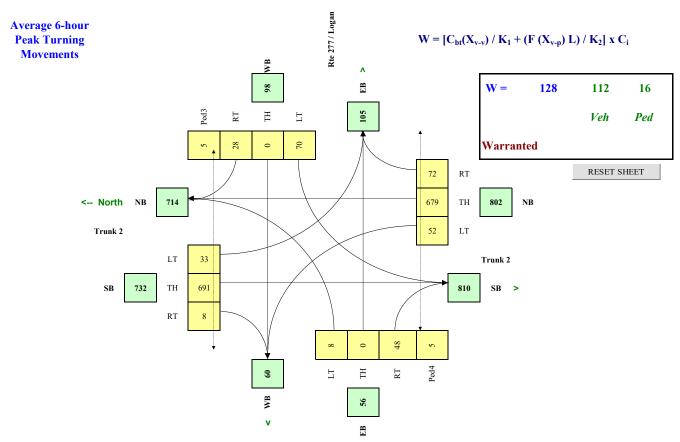
Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n

Other input		Speed (Km/h)	Truck	Bus Rt (v/n)	Median (m)
Trunk 2	NS	60	5.0%	n	0.0
Poplar	EW		5.0%	n	


Are the Poplar EB right turns significantly impeded by through movements? (y/n)

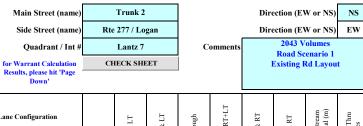
Set Peak Hours													Ped1	Ped2	Ped3	Ped4
Traffic Input	NB SB							WB E					NS	NS	EW	EW
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	41	601	0	0	1524	5	0	0	0	17	0	116	5	5	5	5
8:00 - 9:00	31	452	0	0	1146	4	0	0	0	13	0	87	5	5	5	5
12:00 - 13:00	79	842	0	0	555	5	0	0	0	8	0	40	5	5	5	5
13:00 - 14:00	85	906	0	0	597	5	0	0	0	8	0	43	5	5	5	5
16:00 - 17:00	113	1208	0	0	796	7	0	0	0	11	0	57	5	5	5	5
17:00 - 18:00	106	1133	0	0	747	7	0	0	0	10	0	53	5	5	5	5
Total (6-hour peak)	455	5,142	0	0	5,365	33	0	0	0	67	0	396	30	30	30	30
Average (6-hour peak)	76	857	0	0	894	6	0	0	0	11	0	66	5	5	5	5

Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada


Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)

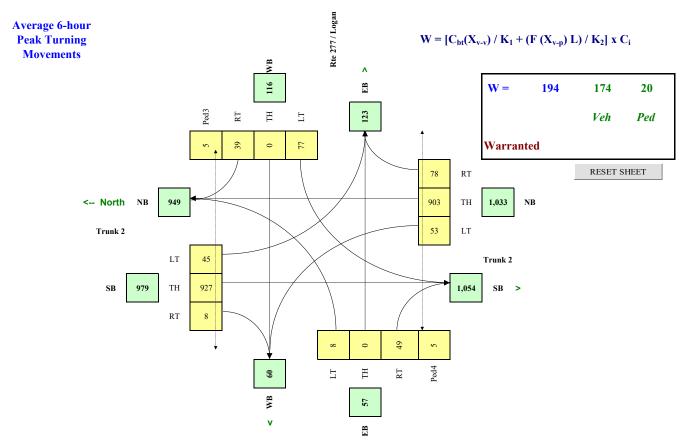
Lane Configuration		Excl LT	Th & LT	Through	Th+RT+LT	Th & RT	Excl RT	UpStream Signal (m)	# of Thru Lanes		
Trunk 2	NB	1				1		2,000	1		
Trunk 2	SB	1				1		280	1		
Rte 277 / Logan	WB				1						
Rte 277 / Logan	EB				1						
Are the Rte 277 / Logan	Are the Rte 277 / Logan WB right turns significantly impeded by through movements? (y/n										
Are the Rte 277 / Logan	Are the Rte 277 / Logan EB right turns significantly impeded by through movements? (y/n)										

Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n

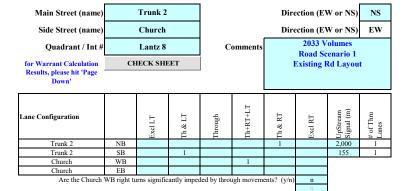

Other input		Speed	Truck	Bus Rt	Median
		(Km/h)	%	(y/n)	(m)
Trunk 2	NS	60	5.0%	n	0.0
Rte 277 / Logan	EW		5.0%	n	

Set Peak Hours													Ped1	Ped2	Ped3	Ped4
Traffic Input	NB SB						WB				EB			NS	EW	EW
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	31	500	44	48	1196	7	121	0	13	16	0	82	5	5	5	5
8:00 - 9:00	23	376	33	36	899	5	91	0	10	12	0	62	5	5	5	5
12:00 - 13:00	53	658	73	24	422	7	43	0	30	3	0	30	5	5	5	5
13:00 - 14:00	57	708	78	26	455	8	47	0	32	4	0	32	5	5	5	5
16:00 - 17:00	76	944	104	34	606	10	62	0	43	5	0	43	5	5	5	5
17:00 - 18:00	71	885	98	32	568	9	58	0	40	5	0	40	5	5	5	5
Total (6-hour peak)	311	4,071	430	200	4,146	46	422	0	168	45	0	289	30	30	30	30
Average (6-hour peak)	52	679	72	33	691	8	70	0	28	8	0	48	5	5	5	5

Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada



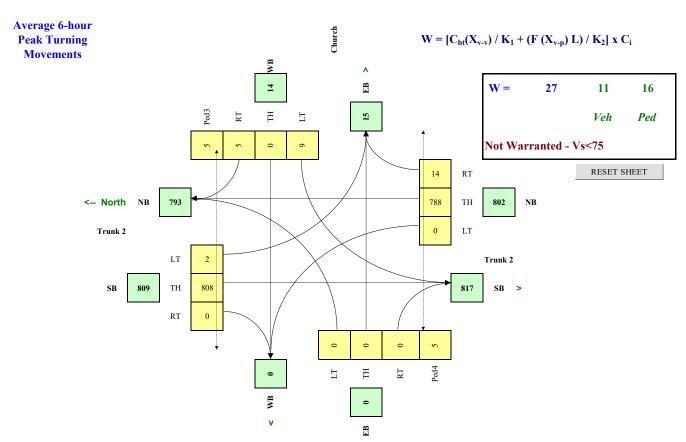
Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)


Lane Configuration		ExclLT	Th & LT	Through	Th+RT+LT	Th & RT	Excl RT	UpStream Signal (m)	# of Thru Lanes		
Trunk 2	NB	1				1		2,000	1		
Trunk 2	SB	1				1		280	1		
Rte 277 / Logan	WB				1						
Rte 277 / Logan	EB				1						
Are the Rte 277 / Logan	Are the Rte 277 / Logan WB right turns significantly impeded by through movements? (y/s										
Are the Rte 277 / Logan	Are the Rte 277 / Logan EB right turns significantly impeded by through movements? (y/n)										

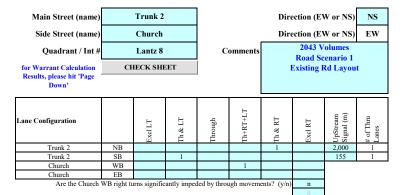
Are the Rte 277 / Logan	EB right to	ırns signific	antly imped	ded by throu	igh moveme	21
ther input		Speed	Truck	Bus Rt	Median	l
		(Km/h)	%	(y/n)	(m)	
3	NIC		5.00/		0.0	

Set Peak Hours						•'							Ped1	Ped2	Ped3	Ped4
Traffic Input		NB			SB			WB			EB		NS	NS	EW	EW
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	31	654	48	68	1609	7	133	0	20	16	0	82	5	5	5	5
8:00 - 9:00	23	492	36	51	1210	5	100	0	15	12	0	62	5	5	5	5
12:00 - 13:00	54	879	79	31	565	7	47	0	40	3	0	31	5	5	5	5
13:00 - 14:00	58	946	86	33	608	8	51	0	44	4	0	34	5	5	5	5
16:00 - 17:00	77	1261	114	44	810	10	68	0	58	5	0	45	5	5	5	5
17:00 - 18:00	72	1183	107	41	760	9	64	0	54	5	0	42	5	5	5	5
Total (6-hour peak)	315	5,415	470	268	5,562	46	463	0	231	45	0	296	30	30	30	30
Average (6-hour peak)	53	903	78	45	927	8	77	0	39	8	0	49	5	5	5	5

Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada



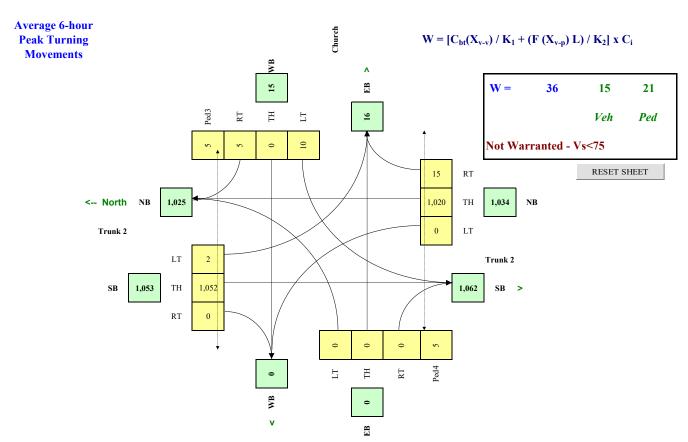
Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)


Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n

Other input		Speed (Km/h)	Truck %	Bus Rt (y/n)	Median (m)
Trunk 2	NS	60	5.0%	n	0.0
Church	EW		5.0%	n	

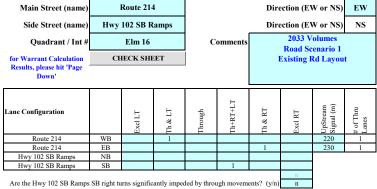
Set Peak Hours													Ped1	Ped2	Ped3	Ped4
Traffic Input	NB				SB			WB		EB			NS	NS	EW	EW
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	0	544	11	3	1412	0	12	0	1	0	0	0	5	5	5	5
8:00 - 9:00	0	409	8	2	1062	0	9	0	1	0	0	0	5	5	5	5
12:00 - 13:00	0	777	13	1	489	0	7	0	6	0	0	0	5	5	5	5
13:00 - 14:00	0	836	14	1	526	0	8	0	6	0	0	0	5	5	5	5
16:00 - 17:00	0	1115	19	1	701	0	10	0	8	0	0	0	5	5	5	5
17:00 - 18:00	0	1046	18	1	657	0	9	0	8	0	0	0	5	5	5	5
Total (6-hour peak)	0	4,727	83	9	4,847	0	55	0	30	0	0	0	30	30	30	30
Average (6-hour peak)	0	788	14	2	808	0	9	0	5	0	0	0	5	5	5	5

Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada



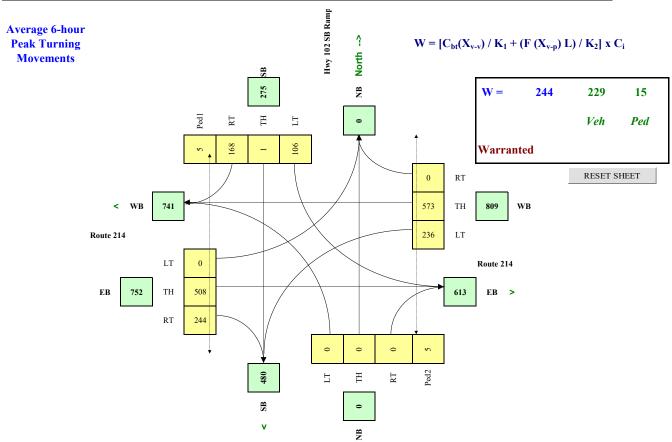
Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)

Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n


Other input		Speed	Truck	Bus Rt	Median
		(Km/h)	%	(y/n)	(m)
Trunk 2	NS	60	5.0%	n	0.0
Church	EW		5.0%	n	

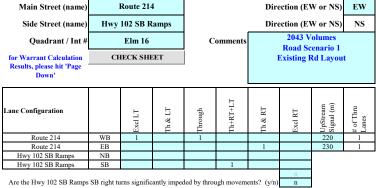
Set Peak Hours													Ped1	Ped2	Ped3	Ped4
Traffic Input	NB				SB			WB			EB			NS	EW	EW
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	0	704	12	3	1838	0	13	0	1	0	0	0	5	5	5	5
8:00 - 9:00	0	529	9	2	1382	0	10	0	1	0	0	0	5	5	5	5
12:00 - 13:00	0	1006	14	1	637	0	8	0	6	0	0	0	5	5	5	5
13:00 - 14:00	0	1082	15	1	685	0	8	0	6	0	0	0	5	5	5	5
16:00 - 17:00	0	1443	20	1	913	0	11	0	8	0	0	0	5	5	5	5
17:00 - 18:00	0	1353	19	1	856	0	10	0	8	0	0	0	5	5	5	5
Total (6-hour peak)	0	6,117	89	9	6,311	0	60	0	30	0	0	0	30	30	30	30
Average (6-hour peak)	0	1,020	15	2	1,052	0	10	0	5	0	0	0	5	5	5	5

Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada



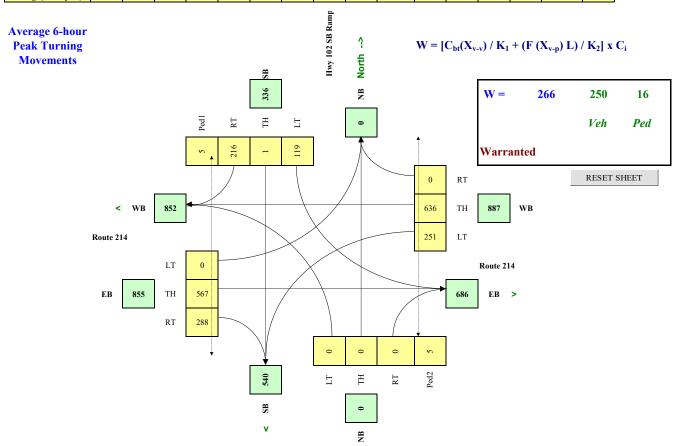
Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)

Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n


Other input		Speed (Km/h)	Truck	Bus Rt	Median
		(Km/n)	%0	(y/n)	(m)
Route 214	EW	60	5.0%	n	0.0
Hwy 102 SB Ramps	NS		5.0%	n	

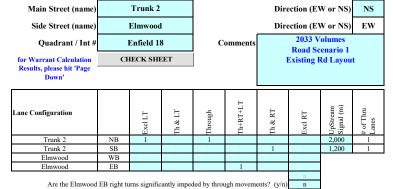
Set Peak Hours													Ped1	Ped2	Ped3	Ped4
Traffic Input	NB				SB			WB		EB			NS	NS	EW	EW
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	0	0	0	104	0	274	451	605	0	0	454	350	5	5	5	5
8:00 - 9:00	0	0	0	78	0	206	339	455	0	0	341	263	5	5	5	5
12:00 - 13:00	0	0	0	93	1	109	128	490	0	0	464	175	5	5	5	5
13:00 - 14:00	0	0	0	100	2	117	138	527	0	0	499	188	5	5	5	5
16:00 - 17:00	0	0	0	133	2	156	184	703	0	0	665	251	5	5	5	5
17:00 - 18:00	0	0	0	125	2	146	173	659	0	0	624	235	5	5	5	5
Total (6-hour peak)	0	0	0	633	7	1,008	1,413	3,439	0	0	3,047	1,462	30	30	30	30
Average (6-hour peak)	0	0	0	106	1	168	236	573	0	0	508	244	5	5	5	5

Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada



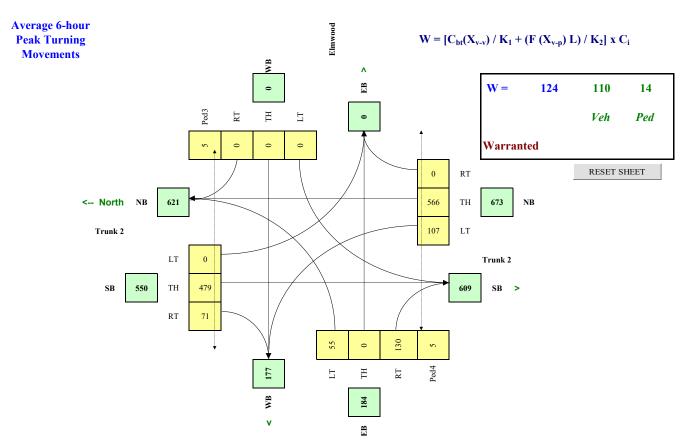
Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)

Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n

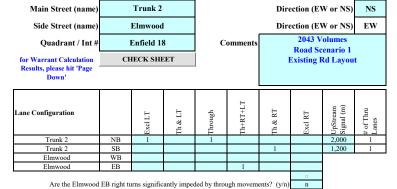

Other input		Speed	Truck	Bus Rt	Median
		(Km/h)	%	(y/n)	(m)
Route 214	EW	60	5.0%	n	0.0
Hwy 102 SB Ramps	NS		5.0%	n	

Set Peak Hours						=							Ped1	Ped2	Ped3	Ped4
Traffic Input		NB			SB			WB			EB		NS	NS	EW	EW
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	0	0	0	110	0	388	479	743	0	0	492	375	5	5	5	5
8:00 - 9:00	0	0	0	83	0	292	360	559	0	0	370	282	5	5	5	5
12:00 - 13:00	0	0	0	107	1	127	137	517	0	0	524	220	5	5	5	5
13:00 - 14:00	0	0	0	115	2	137	148	557	0	0	563	237	5	5	5	5
16:00 - 17:00	0	0	0	153	2	182	197	742	0	0	751	316	5	5	5	5
17:00 - 18:00	0	0	0	143	2	171	185	696	0	0	704	296	5	5	5	5
Total (6-hour peak)	0	0	0	711	7	1,297	1,506	3,814	0	0	3,404	1,726	30	30	30	30
Average (6-hour peak)	0	0	0	119	1	216	251	636	0	0	567	288	5	5	5	5

Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada



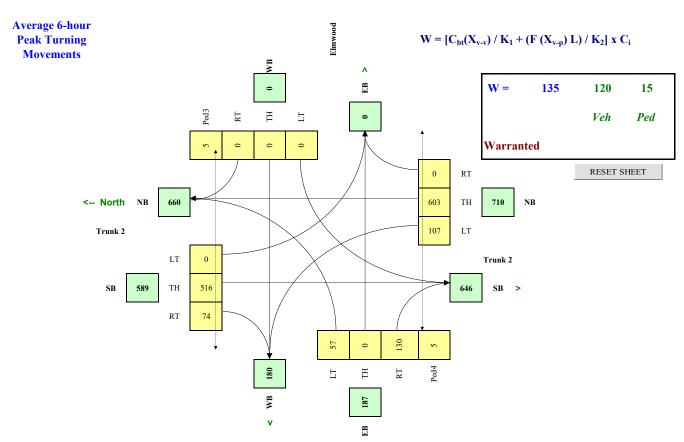
NSDPW
Mun. of East Hants
Dec 2023
June 2023
(yyyy-mm-dd)


Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n

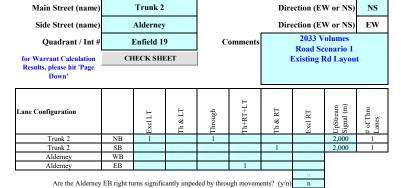
Other input		Speed	Truck	Bus Rt	Median
		(Km/h)	%	(y/n)	(m)
Trunk 2	NS	60	5.0%	n	0.0
Elmwood	EW		5.0%	n	

Set Peak Hours													Ped1	Ped2	Ped3	Ped4
Traffic Input	NB SB				WB			EB			NS	EW	EW			
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	56	571	0	0	602	47	0	0	0	88	0	242	5	5	5	5
8:00 - 9:00	42	429	0	0	453	35	0	0	0	66	0	182	5	5	5	5
12:00 - 13:00	112	494	0	0	374	70	0	0	0	36	0	73	5	5	5	5
13:00 - 14:00	120	531	0	0	403	76	0	0	0	38	0	79	5	5	5	5
16:00 - 17:00	160	708	0	0	537	101	0	0	0	51	0	105	5	5	5	5
17:00 - 18:00	150	664	0	0	504	95	0	0	0	48	0	98	5	5	5	5
Total (6-hour peak)	640	3,397	0	0	2,873	424	0	0	0	327	0	779	30	30	30	30
Average (6-hour peak)	107	566	0	0	479	71	0	0	0	55	0	130	5	5	5	5

Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada



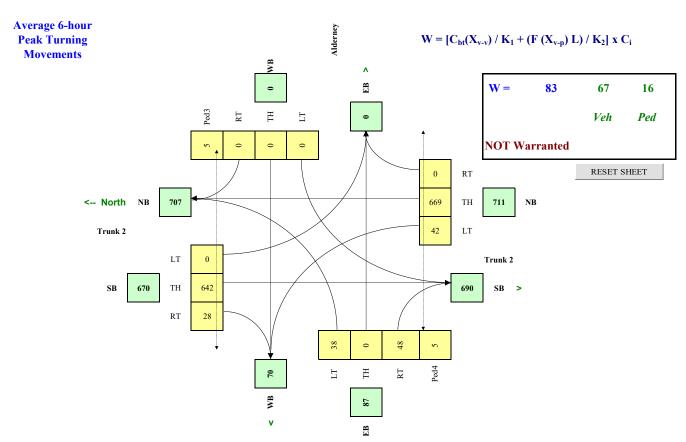
Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)


Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n

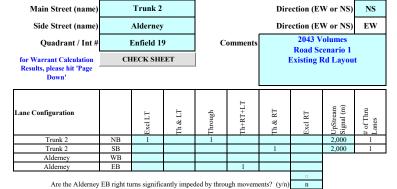
Other input		Speed	Truck	Bus Rt	Median
		(Km/h)	%	(y/n)	(m)
Trunk 2	NS	60	5.0%	n	0.0
Elmwood	EW		5.0%	n	

Set Peak Hours													Ped1	Ped2	Ped3	Ped4
Traffic Input	NB SB					WB			EB			NS	EW	EW		
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	56	600	0	0	661	51	0	0	0	90	0	242	5	5	5	5
8:00 - 9:00	42	451	0	0	497	38	0	0	0	68	0	182	5	5	5	5
12:00 - 13:00	112	529	0	0	399	73	0	0	0	38	0	73	5	5	5	5
13:00 - 14:00	120	569	0	0	429	78	0	0	0	41	0	79	5	5	5	5
16:00 - 17:00	160	759	0	0	572	104	0	0	0	54	0	105	5	5	5	5
17:00 - 18:00	150	712	0	0	536	98	0	0	0	51	0	98	5	5	5	5
Total (6-hour peak)	640	3,620	0	0	3,094	442	0	0	0	342	0	779	30	30	30	30
Average (6-hour peak)	107	603	0	0	516	74	0	0	0	57	0	130	5	5	5	5

Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada



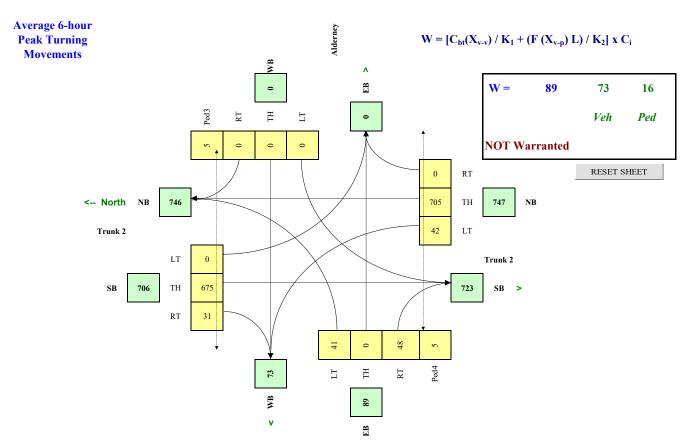
Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)


Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n

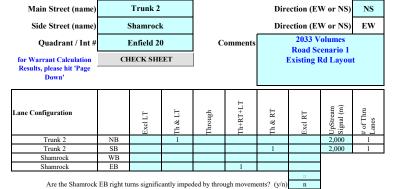
Other input		Speed (Km/h)	Truck	Bus Rt (v/n)	Median (m)
Trunk 2	NS	60	5.0%	n	0.0
Alderney	EW		5.0%	n	

Set Peak Hours														Ped2	Ped3	Ped4
Traffic Input	NB			SB			WB			EB			NS	NS	EW	EW
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	24	536	0	0	946	25	0	0	0	48	0	88	5	5	5	5
8:00 - 9:00	18	403	0	0	711	19	0	0	0	36	0	66	5	5	5	5
12:00 - 13:00	43	633	0	0	452	26	0	0	0	30	0	28	5	5	5	5
13:00 - 14:00	47	681	0	0	486	28	0	0	0	32	0	30	5	5	5	5
16:00 - 17:00	62	908	0	0	648	37	0	0	0	43	0	40	5	5	5	5
17:00 - 18:00	58	852	0	0	608	35	0	0	0	40	0	38	5	5	5	5
Total (6-hour peak)	252	4,013	0	0	3,851	170	0	0	0	229	0	290	30	30	30	30
Average (6-hour peak)	42	669	0	0	642	28	0	0	0	38	0	48	5	5	5	5

Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada



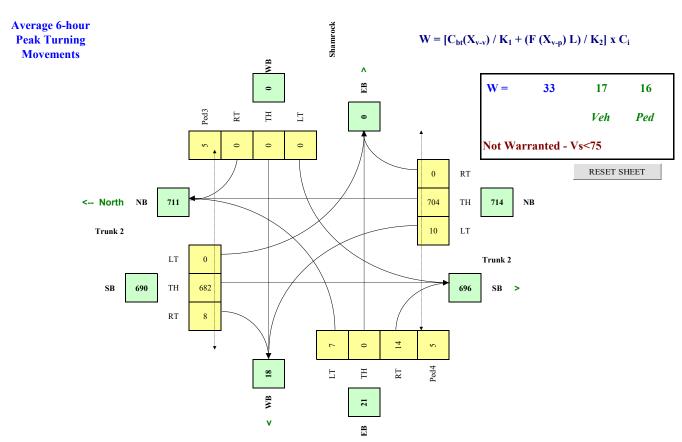
Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)


Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n

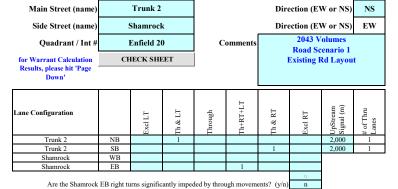
Other input		Speed (Km/h)	Truck %	Bus Rt (y/n)	Median (m)
Trunk 2	NS	60	5.0%	n	0.0
Aldernev	EW		5.0%	n	

Set Peak Hours													Ped1	Ped2	Ped3	Ped4
Traffic Input	NB			SB				WB		EB			NS	NS	EW	EW
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	24	563	0	0	999	29	0	0	0	51	0	88	5	5	5	5
8:00 - 9:00	18	423	0	0	751	22	0	0	0	38	0	66	5	5	5	5
12:00 - 13:00	43	668	0	0	473	28	0	0	0	32	0	28	5	5	5	5
13:00 - 14:00	47	719	0	0	509	30	0	0	0	35	0	30	5	5	5	5
16:00 - 17:00	62	958	0	0	679	40	0	0	0	46	0	40	5	5	5	5
17:00 - 18:00	58	898	0	0	637	38	0	0	0	43	0	38	5	5	5	5
Total (6-hour peak)	252	4,229	0	0	4,048	187	0	0	0	245	0	290	30	30	30	30
Average (6-hour peak)	42	705	0	0	675	31	0	0	0	41	0	48	5	5	5	5

Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada



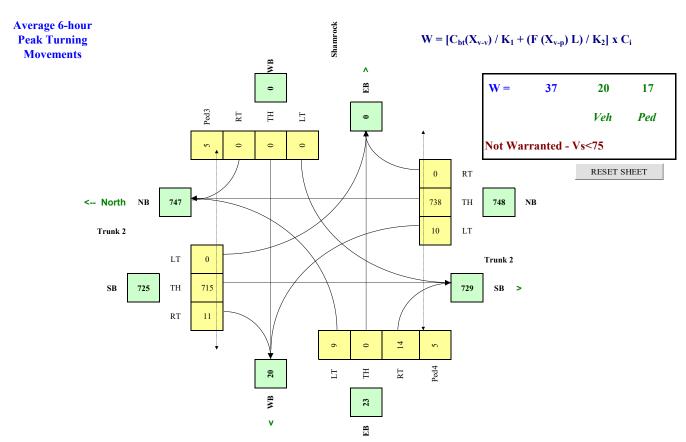
Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)


Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n

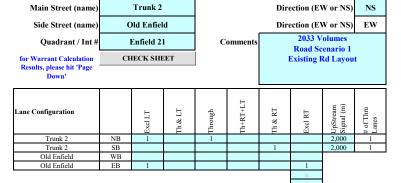
Other input		Speed	Truck	Bus Rt	Median
		(Km/h)	%	(y/n)	(m)
Trunk 2	NS	60	5.0%	n	0.0
Shamrock	EW		5.0%	n	

Set Peak Hours													Ped1	Ped2	Ped3	Ped4
Traffic Input	NB			SB			WB			EB			NS	NS	EW	EW
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	5	552	0	0	1027	7	0	0	0	7	0	32	5	5	5	5
8:00 - 9:00	4	415	0	0	772	5	0	0	0	5	0	24	5	5	5	5
12:00 - 13:00	10	671	0	0	472	7	0	0	0	6	0	6	5	5	5	5
13:00 - 14:00	11	722	0	0	508	8	0	0	0	7	0	6	5	5	5	5
16:00 - 17:00	15	962	0	0	677	10	0	0	0	9	0	8	5	5	5	5
17:00 - 18:00	14	902	0	0	635	9	0	0	0	8	0	8	5	5	5	5
Total (6-hour peak)	59	4,224	0	0	4,091	46	0	0	0	42	0	84	30	30	30	30
Average (6-hour peak)	10	704	0	0	682	8	0	0	0	7	0	14	5	5	5	5

Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada



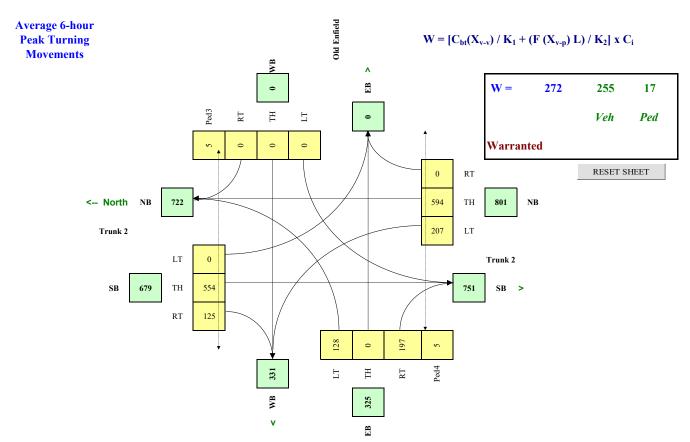
Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)


Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n

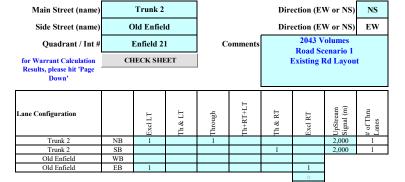
ſ	Other input		Speed (Km/h)	Truck %	Bus Rt (v/n)	Median (m)
ľ	Trunk 2	NS	60	5.0%	n	0.0
Γ	Shamrock	EW		5.0%	n	

Set Peak Hours													Ped1	Ped2	Ped3	Ped4
Traffic Input	ıt NB				SB			WB		EB			NS	NS	EW	EW
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	5	579	0	0	1079	11	0	0	0	9	0	32	5	5	5	5
8:00 - 9:00	4	435	0	0	811	8	0	0	0	7	0	24	5	5	5	5
12:00 - 13:00	10	703	0	0	494	9	0	0	0	8	0	6	5	5	5	5
13:00 - 14:00	11	756	0	0	531	10	0	0	0	9	0	6	5	5	5	5
16:00 - 17:00	15	1008	0	0	708	13	0	0	0	12	0	8	5	5	5	5
17:00 - 18:00	14	945	0	0	664	12	0	0	0	11	0	8	5	5	5	5
Total (6-hour peak)	59	4,426	0	0	4,287	63	0	0	0	56	0	84	30	30	30	30
Average (6-hour peak)	10	738	0	0	715	11	0	0	0	9	0	14	5	5	5	5

Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada



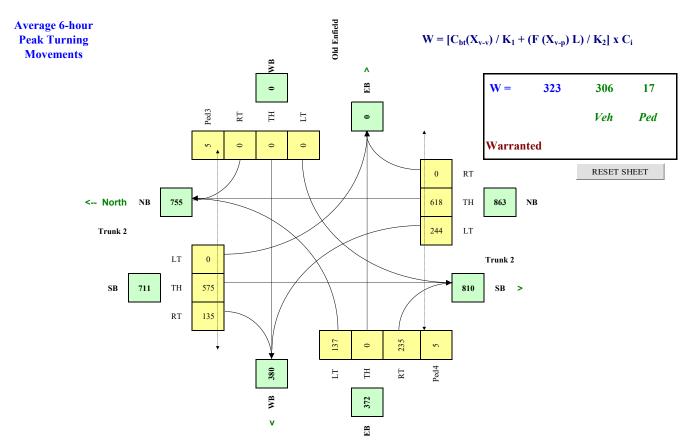
Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)


Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n

Other input		Speed	Truck	Bus Rt	Median
		(Km/h)	%	(y/n)	(m)
Trunk 2	NS	60	5.0%	n	0.0
Old Enfield	FW		5.0%	n	

Set Peak Hours													Ped1	Ped2	Ped3	Ped4
Traffic Input		NB		SB			WB			EB			NS	NS	EW	EW
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	97	350	0	0	991	100	0	0	0	185	0	391	5	5	5	5
8:00 - 9:00	73	263	0	0	745	75	0	0	0	139	0	294	5	5	5	5
12:00 - 13:00	220	608	0	0	327	118	0	0	0	91	0	102	5	5	5	5
13:00 - 14:00	237	654	0	0	352	127	0	0	0	98	0	110	5	5	5	5
16:00 - 17:00	316	872	0	0	469	169	0	0	0	130	0	147	5	5	5	5
17:00 - 18:00	296	818	0	0	440	158	0	0	0	122	0	138	5	5	5	5
Total (6-hour peak)	1,239	3,565	0	0	3,324	747	0	0	0	765	0	1,182	30	30	30	30
Average (6-hour peak)	207	594	0	0	554	125	0	0	0	128	0	197	5	5	5	5

Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada

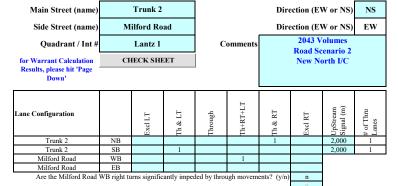


Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)

Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n

Other input		Speed	Truck	Bus Rt	Median
		(Km/h)	%	(y/n)	(m)
Trunk 2	NS	60	5.0%	n	0.0
Old Enfield	FW		5.0%	n	

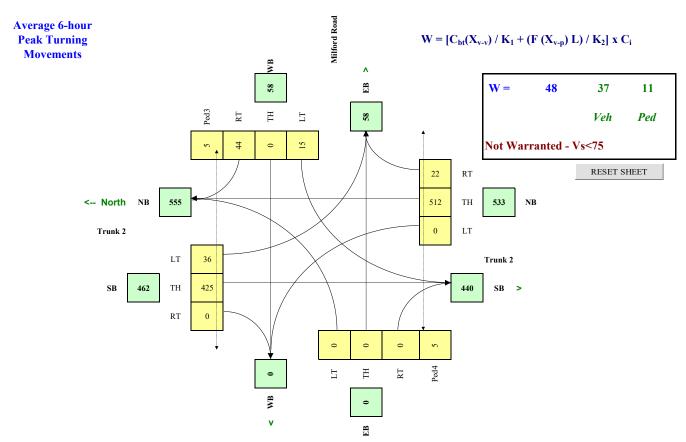
Set Peak Hours													Ped1	Ped2	Ped3	Ped4
Traffic Input	NB			SB				WB		EB			NS	NS	EW	EW
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	118	363	0	0	1033	109	0	0	0	198	0	454	5	5	5	5
8:00 - 9:00	89	273	0	0	777	82	0	0	0	149	0	341	5	5	5	5
12:00 - 13:00	259	633	0	0	338	128	0	0	0	98	0	126	5	5	5	5
13:00 - 14:00	279	681	0	0	364	137	0	0	0	105	0	136	5	5	5	5
16:00 - 17:00	372	908	0	0	485	183	0	0	0	140	0	181	5	5	5	5
17:00 - 18:00	349	852	0	0	455	172	0	0	0	131	0	170	5	5	5	5
Total (6-hour peak)	1,466	3,710	0	0	3,452	811	0	0	0	821	0	1,408	30	30	30	30
Average (6-hour peak)	244	618	0	0	575	135	0	0	0	137	0	235	5	5	5	5


Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada

Traffic Signal Warrant Results - Option 2 Road Network

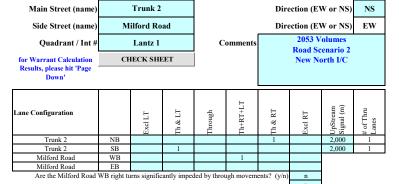
Existing Stop-controlled intersections only

		Option 2	Option 2 - North I/C			
			•	Equilibrium	Assignment	
Community	No.	Main Road Secondary Road		2043	Unconstrained	
	1	Trunk 2	Milford Rd	48	62	
	2	Trunk 2	FH Street A	73	180	
	3	Trunk 2	Wickwire North	107	212	
	4	Trunk 2	Wickwire South	210	380	
	5	Trunk 2	Frederick Allen	57	76	
Lantz	6	Trunk 2	Poplar	75	99	
Laiitz	7	Trunk 2	Rte 277 / Logan	153	210	
	8	Trunk 2	Church	27	33	
	9	Trunk 2	Lantz Connector	Roundabout	Roundabout	
	10	Lantz Connector	Shaw Dr	Roundabout	Roundabout	
	11	Lantz Connector	Hwy 102 NB Ramps	Roundabout	Roundabout	
	12	Lantz Connector	Hwy 102 SB Ramps	Roundabout	Roundabout	
	13	Route 214	Trunk 2	Signals	Signals	
	14	Route 214	Mason Dr	Signals	Signals	
Elmsdale	15	Route 214	Hwy 102 NB Ramps	Signals	Signals	
	16	Route 214	Hwy 102 SB Ramps	266	338	
	17	Route 214	Park Rd	Signals	Signals	
	18	Trunk 2	Elmwood	135	147	
Enfield	19	Trunk 2	Alderney	89	97	
Lillela	20	Trunk 2	Shamrock	37	41	
	21	Trunk 2	Old Enfield Rd	323	491	



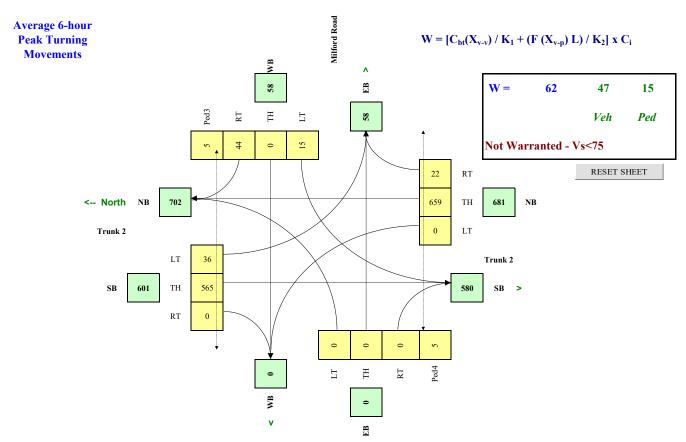
Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)

Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n

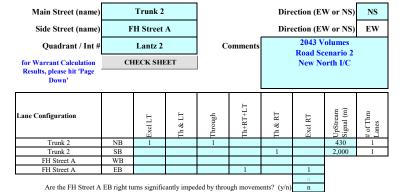

ĺ	Other input		Speed (Km/h)	Truck %	Bus Rt (y/n)	Median (m)
Ì	Trunk 2	NS	60	5.0%	n	0.0
ſ	Milford Road	EW		5.0%	n	

Set Peak Hours													Ped1	Ped2	Ped3	Ped4
Traffic Input		NB			SB			WB			EB		NS	NS	EW	EW
-	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	0	729	20	24	354	0	12	0	52	0	0	0	5	5	5	5
8:00 - 9:00	0	550	15	18	267	0	9	0	39	0	0	0	5	5	5	5
12:00 - 13:00	0	369	20	36	397	0	14	0	35	0	0	0	5	5	5	5
13:00 - 14:00	0	397	21	39	428	0	15	0	38	0	0	0	5	5	5	5
16:00 - 17:00	0	529	28	52	570	0	20	0	50	0	0	0	5	5	5	5
17:00 - 18:00	0	496	26	49	535	0	19	0	47	0	0	0	5	5	5	5
Total (6-hour peak)	0	3,070	130	218	2,551	0	89	0	261	0	0	0	30	30	30	30
Average (6-hour peak)	0	512	22	36	425	0	15	0	44	0	0	0	5	5	5	5

Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada



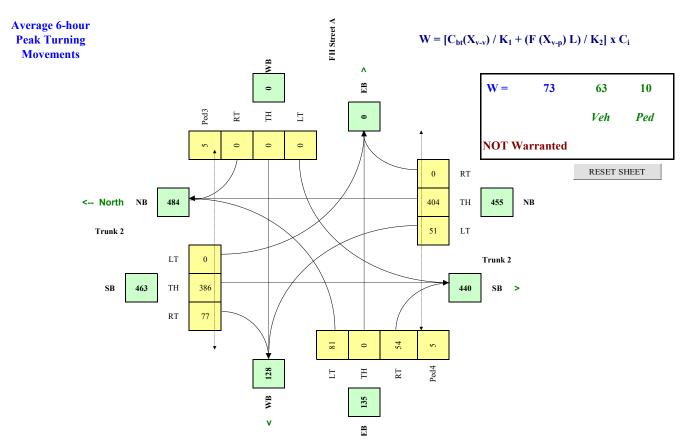
Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)


Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n

Other input		Speed	Truck	Bus Rt	Median
		(Km/h)	%	(y/n)	(m)
Trunk 2	NS	60	5.0%	n	0.0
Milford Road	EW		5.0%	n	

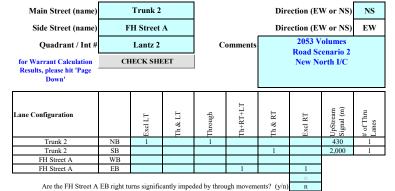
Set Peak Hours												Ped1	Ped2	Ped3	Ped4	
Traffic Input	NB			SB		WB		EB		NS	NS	EW	EW			
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	0	988	20	24	453	0	12	0	52	0	0	0	5	5	5	5
8:00 - 9:00	0	745	15	18	342	0	9	0	39	0	0	0	5	5	5	5
12:00 - 13:00	0	457	20	36	534	0	14	0	35	0	0	0	5	5	5	5
13:00 - 14:00	0	492	21	39	575	0	15	0	38	0	0	0	5	5	5	5
16:00 - 17:00	0	656	28	52	766	0	20	0	50	0	0	0	5	5	5	5
17:00 - 18:00	0	615	26	49	718	0	19	0	47	0	0	0	5	5	5	5
Total (6-hour peak)	0	3,953	130	218	3,388	0	89	0	261	0	0	0	30	30	30	30
Average (6-hour peak)	0	659	22	36	565	0	15	0	44	0	0	0	5	5	5	5

Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada



Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)

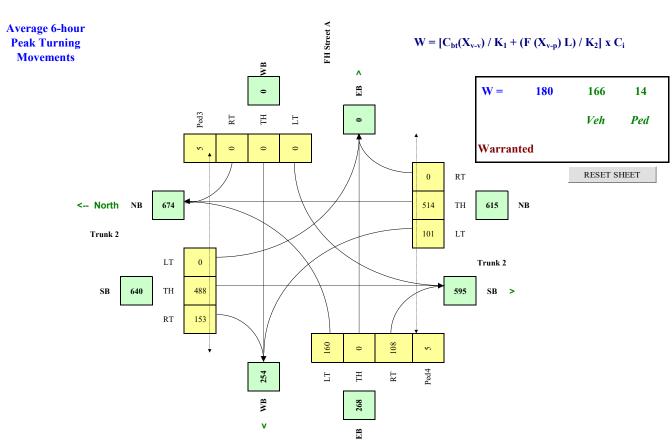
Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n


Other input		Speed	Truck	Bus Rt	Median
		(Km/h)	%	(y/n)	(m)
Trunk 2	NS	60	5.0%	n	0.0
FH Street A	EW		5.0%	n	

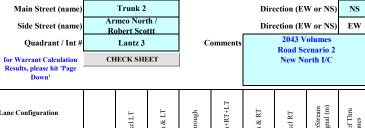
Set Peak Hours													Ped1	Ped2	Ped3	Ped4
Traffic Input	NB			SB			WB			EB			NS	NS	EW	EW
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	51	610	0	0	390	74	0	0	0	148	0	98	5	5	5	5
8:00 - 9:00	38	459	0	0	293	56	0	0	0	111	0	74	5	5	5	5
12:00 - 13:00	45	279	0	0	337	68	0	0	0	46	0	31	5	5	5	5
13:00 - 14:00	48	300	0	0	362	73	0	0	0	50	0	34	5	5	5	5
16:00 - 17:00	64	400	0	0	483	97	0	0	0	66	0	45	5	5	5	5
17:00 - 18:00	60	375	0	0	453	91	0	0	0	62	0	42	5	5	5	5
Total (6-hour peak)	306	2,423	0	0	2,318	459	0	0	0	483	0	324	30	30	30	30
Average (6-hour peak)	51	404	0	0	386	77	0	0	0	81	0	54	5	5	5	5

Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada

TAC

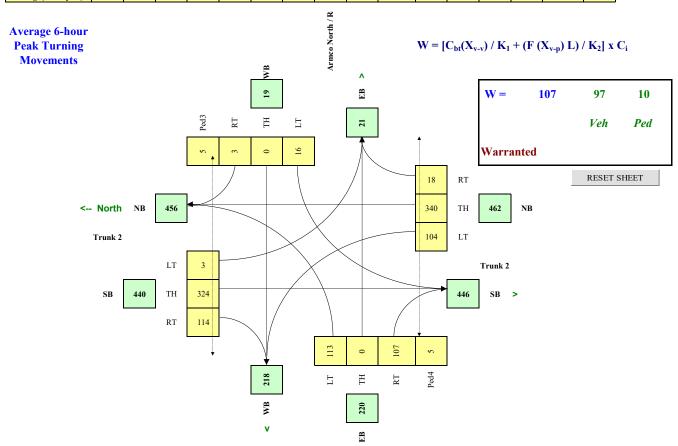


Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)


Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n

Other input		Speed	Truck	Bus Rt	Median
		(Km/h)	%	(y/n)	(m)
Trunk 2	NS	60	5.0%	n	0.0
FH Street A	EW		5.0%	n	

Set Peak Hours													Ped1	Ped2	Ped3	Ped4
Traffic Input		NB			SB			WB			EB		NS	NS	EW	EW
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	100	794	0	0	473	149	0	0	0	294	0	197	5	5	5	5
8:00 - 9:00	75	597	0	0	356	112	0	0	0	221	0	148	5	5	5	5
12:00 - 13:00	89	349	0	0	432	135	0	0	0	92	0	62	5	5	5	5
13:00 - 14:00	96	375	0	0	464	145	0	0	0	99	0	67	5	5	5	5
16:00 - 17:00	128	500	0	0	619	193	0	0	0	132	0	89	5	5	5	5
17:00 - 18:00	120	469	0	0	581	181	0	0	0	124	0	83	5	5	5	5
Total (6-hour peak)	608	3,084	0	0	2,925	915	0	0	0	962	0	646	30	30	30	30
Average (6-hour peak)	101	514	0	0	488	153	0	0	0	160	0	108	5	5	5	5

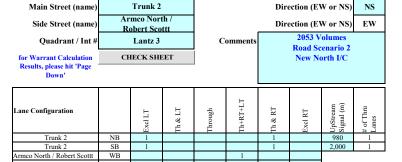

Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)

Lane Configuration		ExclLT	Th & LT	Through	Th+RT+LT	Th & RT	Excl RT	UpStream Signal (m)	# of Thru Lanes
Trunk 2	NB	1				1		980	1
Trunk 2	SB	1				1		2,000	1
Armco North / Robert Scottt	WB				1				
Armco North / Robert Scottt	EB				1		1		
Armco North / Robert Scottt W	B right turn	s significar	tly impede	d by throug	h movemen	ts? (y/n)	n		
Armco North / Robert Scottt F	R right turn	s significar	tly impede	d by throng	h movemen	te? (v/n)	n		

Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n

Other input		Speed (Km/h)	Truck %	Bus Rt (y/n)	Median (m)
Trunk 2	NS	60	5.0%	n	0.0
Armco North / Robert Scottt	EW		5.0%	n	

Set Peak Hours						-							Ped1	Ped2	Ped3	Ped4
Traffic Input		NB			SB			WB			EB		NS	NS	EW	EW
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	52	458	15	5	402	82	32	0	3	200	0	190	5	5	5	5
8:00 - 9:00	39	344	11	4	302	62	24	0	2	150	0	143	5	5	5	5
12:00 - 13:00	110	254	17	1	255	111	8	0	3	68	0	63	5	5	5	5
13:00 - 14:00	119	274	18	2	275	119	8	0	3	73	0	68	5	5	5	5
16:00 - 17:00	158	365	24	2	366	159	11	0	4	97	0	91	5	5	5	5
17:00 - 18:00	148	342	23	2	343	149	10	0	4	91	0	85	5	5	5	5
Total (6-hour peak)	626	2,037	108	16	1,943	682	93	0	19	679	0	640	30	30	30	30
Average (6-hour peak)	104	340	18	3	324	114	16	0	3	113	0	107	5	5	5	5

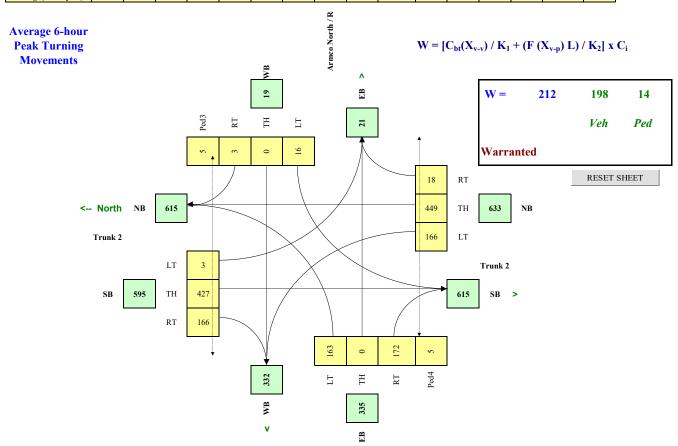


Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada

Armco North / Robert Scottt

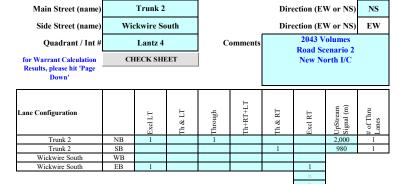
NSDPW - Traffic Signal Warrant Analysis

Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)


Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n

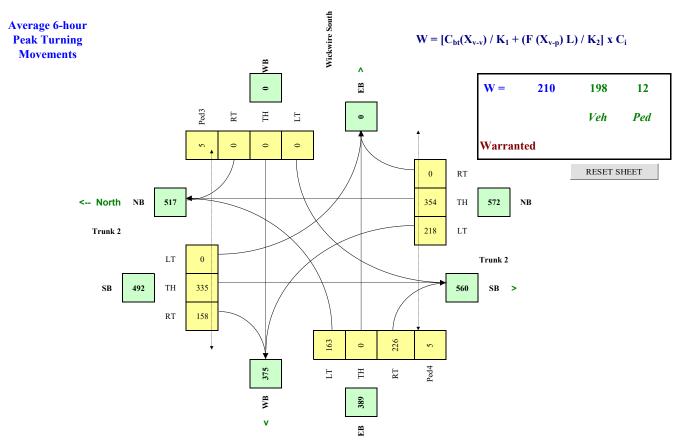
Other input		Speed	Truck	Bus Rt	Median
_		(Km/h)	%	(y/n)	(m)
Trunk 2	NS	60	5.0%	n	0.0
Armco North / Robert Scottt	EW		5.0%	n	

Armco North / Robert Scottt WB right turns significantly impeded by through movements? (y/n) Armco North / Robert Scottt EB right turns significantly impeded by through movements? (y/n)


EB

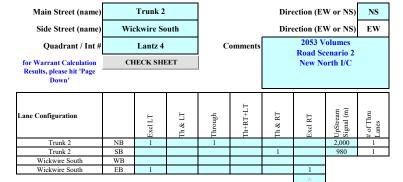
Set Peak Hours						-							Ped1	Ped2	Ped3	Ped4
Traffic Input		NB			SB			WB			EB		NS	NS	EW	EW
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	77	602	15	5	541	124	32	0	3	289	0	306	5	5	5	5
8:00 - 9:00	58	453	11	4	407	93	24	0	2	217	0	230	5	5	5	5
12:00 - 13:00	178	337	17	1	333	160	8	0	3	98	0	102	5	5	5	5
13:00 - 14:00	191	363	18	2	358	172	8	0	3	105	0	110	5	5	5	5
16:00 - 17:00	255	484	24	2	477	229	11	0	4	140	0	146	5	5	5	5
17:00 - 18:00	239	454	23	2	447	215	10	0	4	131	0	137	5	5	5	5
Total (6-hour peak)	998	2,693	108	16	2,563	993	93	0	19	980	0	1,031	30	30	30	30
Average (6-hour peak)	166	449	18	3	427	166	16	0	3	163	0	172	5	5	5	5

Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada



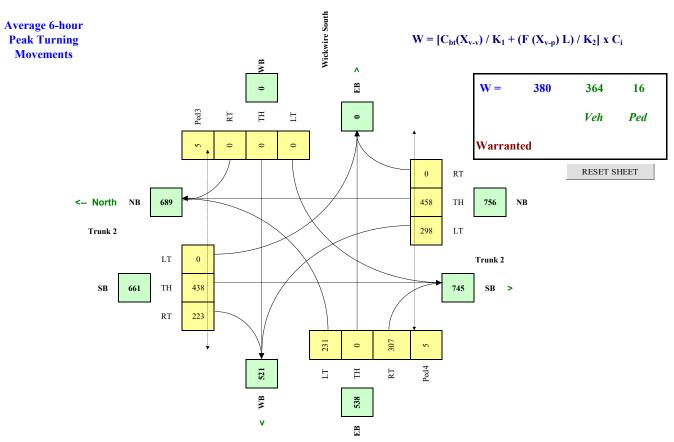
Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)

Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n


Other input		Speed	Truck	Bus Rt	Median
		(Km/h)	%	(y/n)	(m)
Trunk 2	NS	60	5.0%	n	0.0
Wickwire South	FW		5.0%	n	

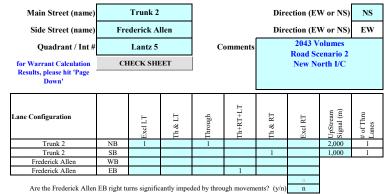
	i e					•										
Set Peak Hours													Ped1	Ped2	Ped3	Ped4
Traffic Input		NB			SB			WB			EB		NS	NS	EW	EW
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	133	278	0	0	569	101	0	0	0	278	0	384	5	5	5	5
8:00 - 9:00	100	209	0	0	428	76	0	0	0	209	0	289	5	5	5	5
12:00 - 13:00	221	337	0	0	208	158	0	0	0	101	0	140	5	5	5	5
13:00 - 14:00	238	363	0	0	224	170	0	0	0	109	0	151	5	5	5	5
16:00 - 17:00	317	484	0	0	299	227	0	0	0	145	0	201	5	5	5	5
17:00 - 18:00	297	454	0	0	280	213	0	0	0	136	0	189	5	5	5	5
Total (6-hour peak)	1,306	2,125	0	0	2,008	945	0	0	0	978	0	1,354	30	30	30	30
Average (6-hour peak)	218	354	0	0	335	158	0	0	0	163	0	226	5	5	5	5

Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada



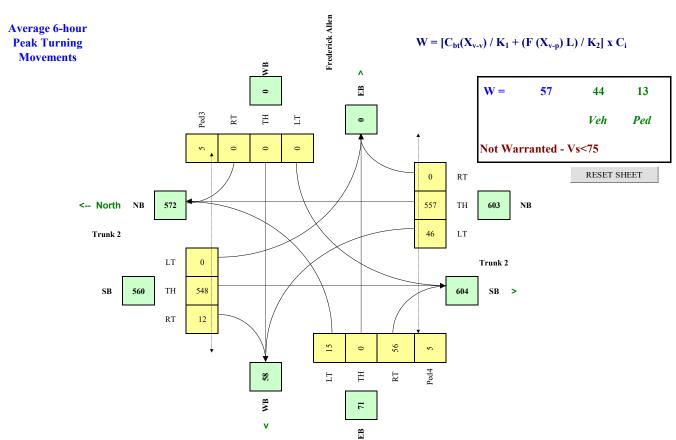
Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)

Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n


Other input		Speed	Truck	Bus Rt	Median
		(Km/h)	%	(y/n)	(m)
Trunk 2	NS	60	5.0%	n	0.0
Wickwire South	EW		5.0%	n	

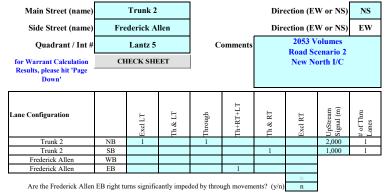
Set Peak Hours													Ped1	Ped2	Ped3	Ped4
Traffic Input		NB			SB			WB			EB		NS	NS	EW	EW
-	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	182	333	0	0	781	145	0	0	0	394	0	525	5	5	5	5
8:00 - 9:00	137	250	0	0	587	109	0	0	0	296	0	395	5	5	5	5
12:00 - 13:00	303	446	0	0	259	223	0	0	0	143	0	190	5	5	5	5
13:00 - 14:00	326	480	0	0	279	240	0	0	0	154	0	205	5	5	5	5
16:00 - 17:00	434	640	0	0	372	320	0	0	0	205	0	273	5	5	5	5
17:00 - 18:00	407	600	0	0	349	300	0	0	0	192	0	256	5	5	5	5
Total (6-hour peak)	1,789	2,749	0	0	2,627	1,337	0	0	0	1,384	0	1,844	30	30	30	30
Average (6-hour peak)	298	458	0	0	438	223	0	0	0	231	0	307	5	5	5	5

Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada



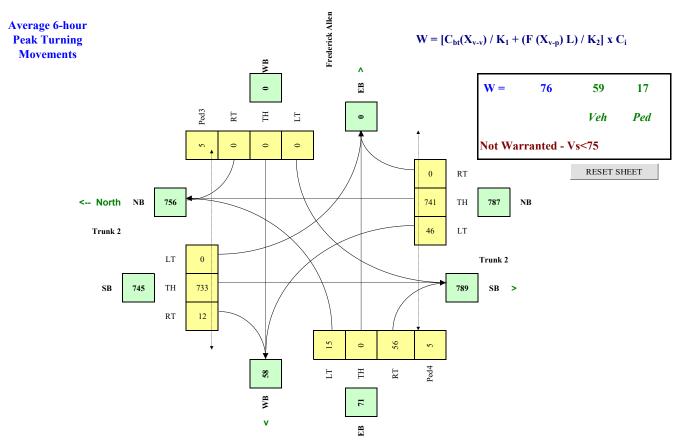
Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)

Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n


Other input		Speed (Km/h)	Truck %	Bus Rt (v/n)	Median (m)
Trunk 2	NS	60	5.0%	n	0.0
Frederick Allen	EW		5.0%	n	

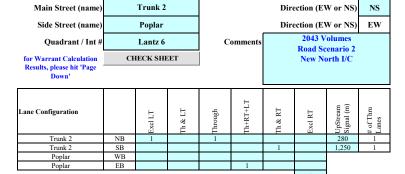
Set Peak Hours													Ped1	Ped2	Ped3	Ped4
Traffic Input	NB SB					WB EB				NS	NS	EW	EW			
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	27	388	0	0	944	9	0	0	0	23	0	102	5	5	5	5
8:00 - 9:00	20	292	0	0	710	7	0	0	0	17	0	77	5	5	5	5
12:00 - 13:00	47	548	0	0	336	12	0	0	0	10	0	33	5	5	5	5
13:00 - 14:00	50	590	0	0	362	13	0	0	0	11	0	35	5	5	5	5
16:00 - 17:00	67	786	0	0	482	17	0	0	0	15	0	47	5	5	5	5
17:00 - 18:00	63	737	0	0	452	16	0	0	0	14	0	44	5	5	5	5
Total (6-hour peak)	274	3,341	0	0	3,286	74	0	0	0	90	0	338	30	30	30	30
Average (6-hour peak)	46	557	0	0	548	12	0	0	0	15	0	56	5	5	5	5

Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada



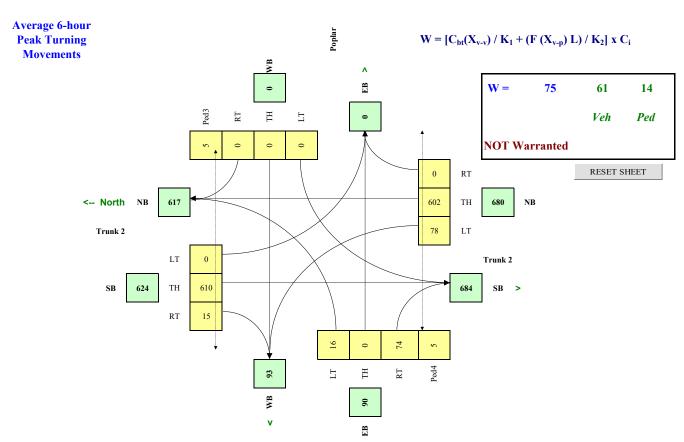
Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)

Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n


Other input		Speed (Km/h)	Truck %	Bus Rt (y/n)	Median (m)
Trunk 2	NS	60	5.0%	n	0.0
Frederick Allen	EW		5.0%	n	

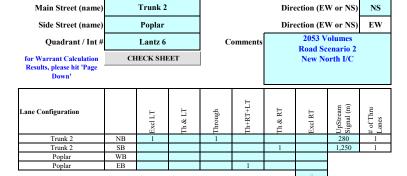
Set Peak Hours													Ped1	Ped2	Ped3	Ped4
Traffic Input	NB SB					WB EB					NS	NS	EW	EW		
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	27	492	0	0	1297	9	0	0	0	23	0	102	5	5	5	5
8:00 - 9:00	20	370	0	0	975	7	0	0	0	17	0	77	5	5	5	5
12:00 - 13:00	47	738	0	0	438	12	0	0	0	10	0	33	5	5	5	5
13:00 - 14:00	50	794	0	0	471	13	0	0	0	11	0	35	5	5	5	5
16:00 - 17:00	67	1059	0	0	628	17	0	0	0	15	0	47	5	5	5	5
17:00 - 18:00	63	993	0	0	589	16	0	0	0	14	0	44	5	5	5	5
Total (6-hour peak)	274	4,446	0	0	4,398	74	0	0	0	90	0	338	30	30	30	30
Average (6-hour peak)	46	741	0	0	733	12	0	0	0	15	0	56	5	5	5	5

Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada


Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)

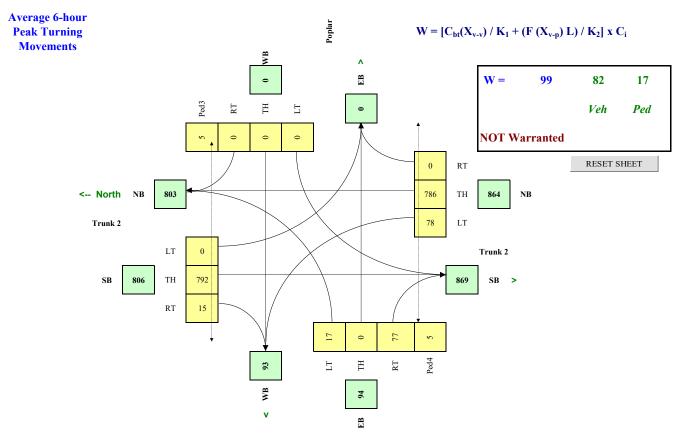
Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n

Other input		Speed	Truck	Bus Rt	Median
		(Km/h)	%	(y/n)	(m)
Trunk 2	NS	60	5.0%	n	0.0
Poplar	EW		5.0%	n	


Are the Poplar EB right turns significantly impeded by through movements? (y/n)

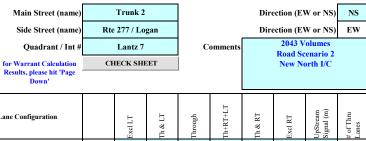
Set Peak Hours													Ped1	Ped2	Ped3	Ped4
Traffic Input	NB SB					WB			EB		NS	NS	EW	EW		
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	47	402	0	0	1039	11	0	0	0	25	0	129	5	5	5	5
8:00 - 9:00	35	302	0	0	781	8	0	0	0	19	0	97	5	5	5	5
12:00 - 13:00	79	598	0	0	379	14	0	0	0	10	0	45	5	5	5	5
13:00 - 14:00	86	644	0	0	407	15	0	0	0	11	0	48	5	5	5	5
16:00 - 17:00	114	858	0	0	543	20	0	0	0	15	0	64	5	5	5	5
17:00 - 18:00	107	805	0	0	509	19	0	0	0	14	0	60	5	5	5	5
Total (6-hour peak)	468	3,609	0	0	3,658	87	0	0	0	94	0	443	30	30	30	30
Average (6-hour peak)	78	602	0	0	610	15	0	0	0	16	0	74	5	5	5	5

Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada


Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)

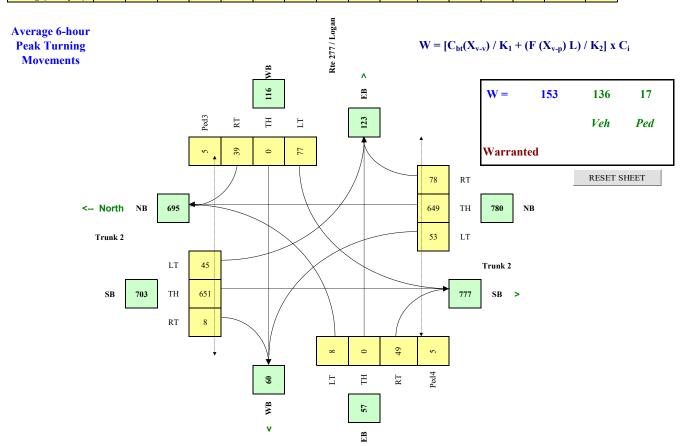
Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n

Other input		Speed (Km/h)	Truck	Bus Rt (v/n)	Median (m)
Trunk 2	NS	60	5.0%	n	0.0
Poplar	EW		5.0%	n	

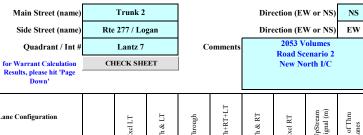

Are the Poplar EB right turns significantly impeded by through movements? (y/n)

Set Peak Hours											Ped1	Ped2	Ped3	Ped4		
Traffic Input		NB			SB			WB			EB		NS	NS	EW	EW
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	47	505	0	0	1381	11	0	0	0	31	0	140	5	5	5	5
8:00 - 9:00	35	380	0	0	1038	8	0	0	0	23	0	105	5	5	5	5
12:00 - 13:00	79	789	0	0	480	14	0	0	0	10	0	45	5	5	5	5
13:00 - 14:00	86	848	0	0	517	15	0	0	0	11	0	48	5	5	5	5
16:00 - 17:00	114	1131	0	0	689	20	0	0	0	15	0	64	5	5	5	5
17:00 - 18:00	107	1061	0	0	646	19	0	0	0	14	0	60	5	5	5	5
Total (6-hour peak)	468	4,714	0	0	4,751	87	0	0	0	104	0	462	30	30	30	30
Average (6-hour peak)	78	786	0	0	792	15	0	0	0	17	0	77	5	5	5	5

Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada

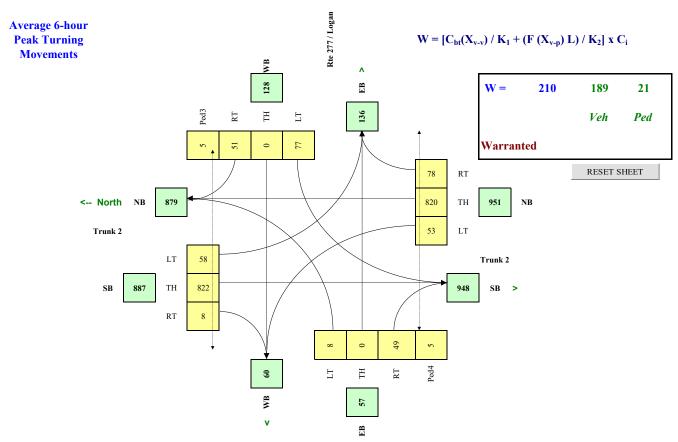

Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)

Lane Configuration		Excl LT	Th & LT	Through	Th+RT+LT	Th & RT	Excl RT	UpStream Signal (m)	# of Thru Lanes
Trunk 2	NB	1				1		2,000	1
Trunk 2	SB	1				1		1,530	1
Rte 277 / Logan	WB				1				
Rte 277 / Logan	EB				1				
Are the Rte 277 / Logan Are the Rte 277 / Logan									

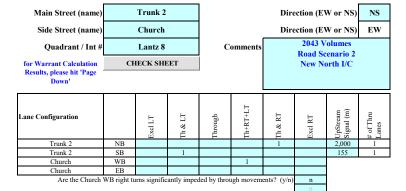

Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n

Other input		Speed	Truck	Bus Rt	Median
		(Km/h)	%	(y/n)	(m)
Trunk 2	NS	60	5.0%	n	0.0
Rte 277 / Logan	EW		5.0%	n	

Set Peak Hours						-							Ped1	Ped2	Ped3	Ped4
Traffic Input		NB			SB			WB			EB		NS	NS	EW	EW
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	31	460	48	68	1138	7	133	0	20	16	0	82	5	5	5	5
8:00 - 9:00	23	346	36	51	856	5	100	0	15	12	0	62	5	5	5	5
12:00 - 13:00	54	636	79	31	393	7	47	0	40	3	0	31	5	5	5	5
13:00 - 14:00	58	684	86	33	423	8	51	0	44	4	0	34	5	5	5	5
16:00 - 17:00	77	912	114	44	564	10	68	0	58	5	0	45	5	5	5	5
17:00 - 18:00	72	855	107	41	529	9	64	0	54	5	0	42	5	5	5	5
Total (6-hour peak)	315	3,893	470	268	3,903	46	463	0	231	45	0	296	30	30	30	30
Average (6-hour peak)	53	649	78	45	651	8	77	0	39	8	0	49	5	5	5	5


Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)

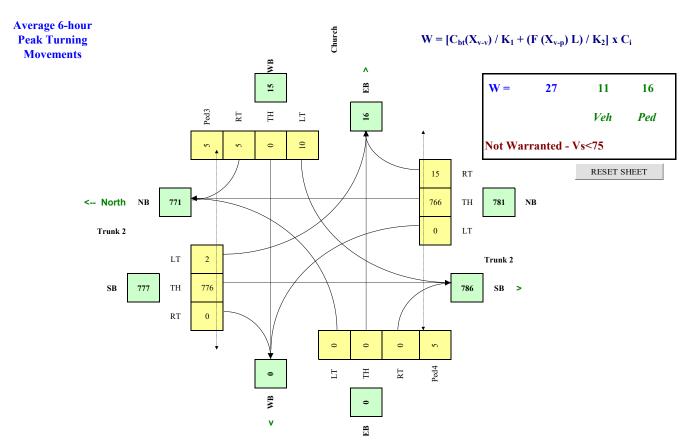
Lane Configuration		ExclLT	Th & LT	Through	Th+RT+LT	Th & RT	Excl RT	UpStream Signal (m)	# of Thru Lanes
Trunk 2	NB	1				1		2,000	1
Trunk 2	SB	1				1		1,530	1
Rte 277 / Logan	WB				1				
Rte 277 / Logan	EB				1				
Are the Rte 277 / Logan	WB right to	ırns signific	antly imped	ded by throu	igh movem	ents? (y/n)	n		
Are the Rte 277 / Logan	EB right to	ırns signific	antly imped	ded by throu	igh movem	ents? (y/n)	n		


Demographics Elem. School/Mobility Challenged Senior's Complex (y/n) (y/n) (y/n) (#) 20,000 Metro Area Population Central Business District

Are the Rte 277 / Logan Are the Rte 277 / Logan					
her input	Speed	Truck	Bus Rt	Median	

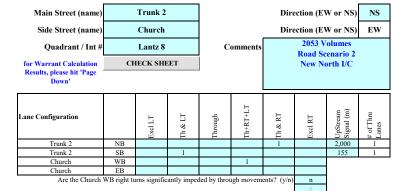
Set Peak Hours						•'							Ped1	Ped2	Ped3	Ped4
Traffic Input		NB			SB			WB			EB		NS	NS	EW	EW
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	31	553	48	90	1467	7	133	0	31	16	0	82	5	5	5	5
8:00 - 9:00	23	416	36	68	1103	5	100	0	23	12	0	62	5	5	5	5
12:00 - 13:00	54	814	79	39	486	7	47	0	52	3	0	31	5	5	5	5
13:00 - 14:00	58	875	86	42	523	8	51	0	56	4	0	34	5	5	5	5
16:00 - 17:00	77	1167	114	56	697	10	68	0	75	5	0	45	5	5	5	5
17:00 - 18:00	72	1094	107	53	654	9	64	0	70	5	0	42	5	5	5	5
Total (6-hour peak)	315	4,919	470	348	4,930	46	463	0	307	45	0	296	30	30	30	30
Average (6-hour peak)	53	820	78	58	822	8	77	0	51	8	0	49	5	5	5	5

TAC



Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)

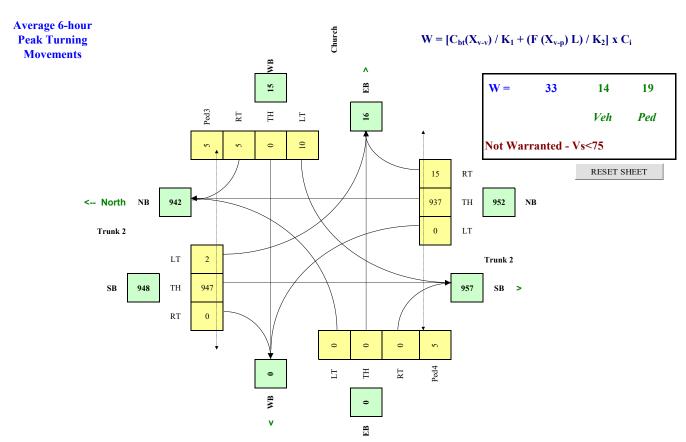
Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n


Other input		Speed (Km/h)	Truck %	Bus Rt (y/n)	Median (m)
Trunk 2	NS	60	5.0%	n	0.0
Church	EW		5.0%	n	

Set Peak Hours												Ped1	Ped2	Ped3	Ped4	
Traffic Input		NB			SB			WB			EB		NS	NS	EW	EW
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	0	509	12	3	1367	0	13	0	1	0	0	0	5	5	5	5
8:00 - 9:00	0	383	9	2	1028	0	10	0	1	0	0	0	5	5	5	5
12:00 - 13:00	0	763	14	1	465	0	8	0	6	0	0	0	5	5	5	5
13:00 - 14:00	0	821	15	1	500	0	8	0	6	0	0	0	5	5	5	5
16:00 - 17:00	0	1094	20	1	667	0	11	0	8	0	0	0	5	5	5	5
17:00 - 18:00	0	1026	19	1	626	0	10	0	8	0	0	0	5	5	5	5
Total (6-hour peak)	0	4,596	89	9	4,653	0	60	0	30	0	0	0	30	30	30	30
Average (6-hour peak)	0	766	15	2	776	0	10	0	5	0	0	0	5	5	5	5

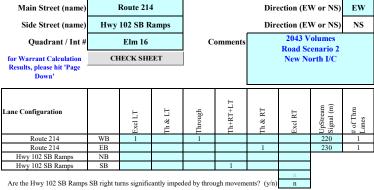
Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada

TAC



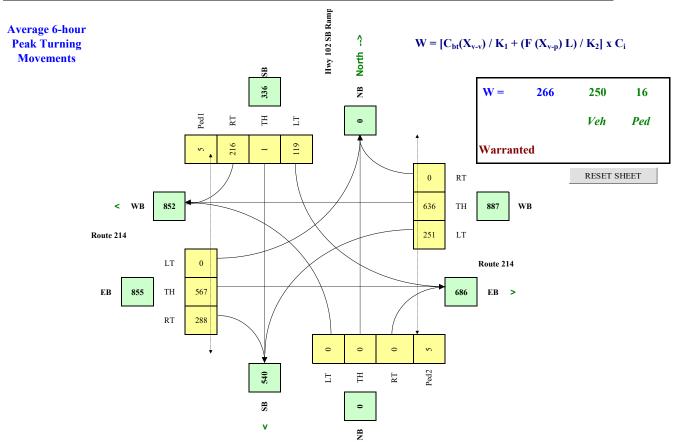
Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)

Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n


Other input		Speed (Km/h)	Truck %	Bus Rt (y/n)	Median (m)
Trunk 2	NS	60	5.0%	n	0.0
Church	EW		5.0%	n	

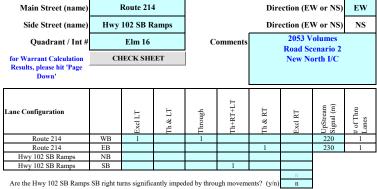
Set Peak Hours												Ped1	Ped2	Ped3	Ped4	
Traffic Input		NB			SB			WB			EB		NS	NS	EW	EW
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	0	602	12	3	1696	0	13	0	1	0	0	0	5	5	5	5
8:00 - 9:00	0	453	9	2	1275	0	10	0	1	0	0	0	5	5	5	5
12:00 - 13:00	0	941	14	1	558	0	8	0	6	0	0	0	5	5	5	5
13:00 - 14:00	0	1012	15	1	600	0	8	0	6	0	0	0	5	5	5	5
16:00 - 17:00	0	1349	20	1	800	0	11	0	8	0	0	0	5	5	5	5
17:00 - 18:00	0	1265	19	1	750	0	10	0	8	0	0	0	5	5	5	5
Total (6-hour peak)	0	5,622	89	9	5,679	0	60	0	30	0	0	0	30	30	30	30
Average (6-hour peak)	0	937	15	2	947	0	10	0	5	0	0	0	5	5	5	5

Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada



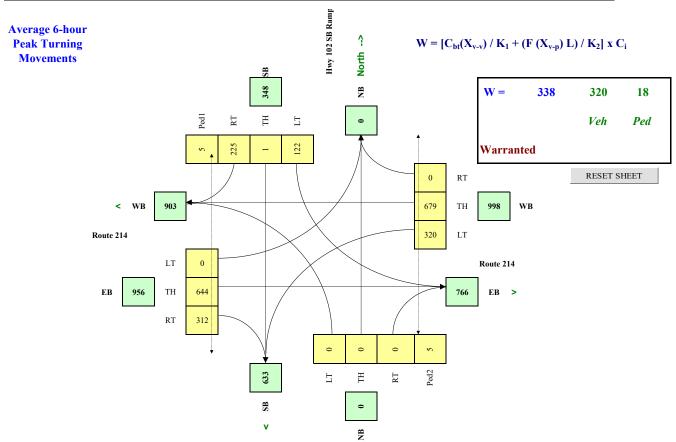
Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)

Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n


Other input		Speed	Truck	Bus Rt	Median
		(Km/h)	%	(y/n)	(m)
Route 214	EW	60	5.0%	n	0.0
Hwy 102 SB Ramps	NS		5.0%	n	

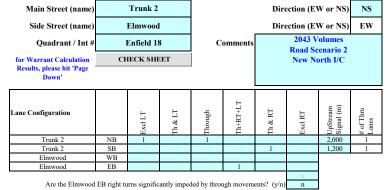
Set Peak Hours												Ped1	Ped2	Ped3	Ped4	
Traffic Input		NB			SB			WB			EB		NS	NS	EW	EW
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	0	0	0	110	0	388	479	743	0	0	492	375	5	5	5	5
8:00 - 9:00	0	0	0	83	0	292	360	559	0	0	370	282	5	5	5	5
12:00 - 13:00	0	0	0	107	1	127	137	517	0	0	524	220	5	5	5	5
13:00 - 14:00	0	0	0	115	2	137	148	557	0	0	563	237	5	5	5	5
16:00 - 17:00	0	0	0	153	2	182	197	742	0	0	751	316	5	5	5	5
17:00 - 18:00	0	0	0	143	2	171	185	696	0	0	704	296	5	5	5	5
Total (6-hour peak)	0	0	0	711	7	1,297	1,506	3,814	0	0	3,404	1,726	30	30	30	30
Average (6-hour peak)	0	0	0	119	1	216	251	636	0	0	567	288	5	5	5	5

Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada



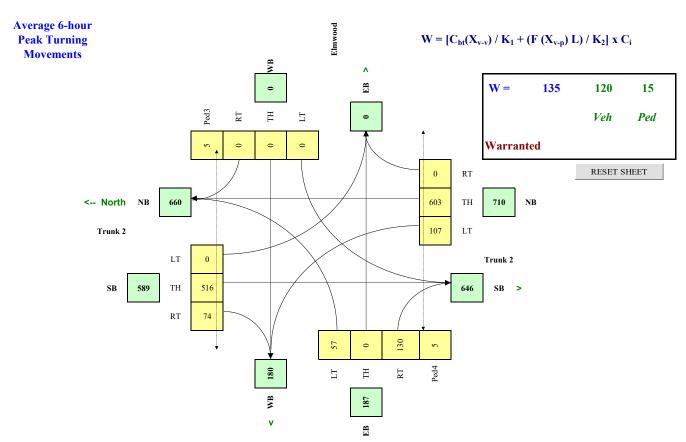
Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)

Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n


Other input		Speed	Truck	Bus Rt	Median
		(Km/h)	%	(y/n)	(m)
Route 214	EW	60	5.0%	n	0.0
Hwy 102 SB Ramps	NS		5.0%	n	

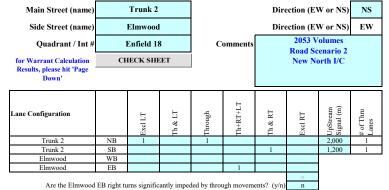
Set Peak Hours													Ped1	Ped2	Ped3	Ped4
Traffic Input		NB		SB				WB		EB			NS	NS	EW	EW
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	0	0	0	112	0	392	599	797	0	0	557	416	5	5	5	5
8:00 - 9:00	0	0	0	84	0	295	450	599	0	0	419	313	5	5	5	5
12:00 - 13:00	0	0	0	110	1	136	179	551	0	0	595	236	5	5	5	5
13:00 - 14:00	0	0	0	119	2	146	193	593	0	0	640	254	5	5	5	5
16:00 - 17:00	0	0	0	158	2	195	257	790	0	0	853	338	5	5	5	5
17:00 - 18:00	0	0	0	148	2	183	241	741	0	0	800	317	5	5	5	5
Total (6-hour peak)	0	0	0	731	7	1,347	1,919	4,071	0	0	3,864	1,874	30	30	30	30
Average (6-hour peak)	0	0	0	122	1	225	320	679	0	0	644	312	5	5	5	5

Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada



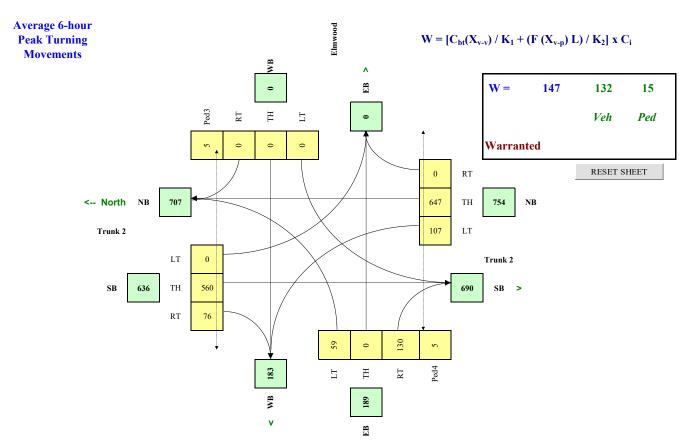
Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)

Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n


Other input		Speed (Km/h)	Truck %	Bus Rt (y/n)	Median (m)
Trunk 2	NS	60	5.0%	n	0.0
Elmwood	EW		5.0%	n	

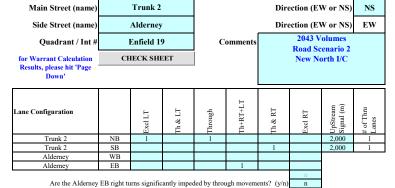
Set Peak Hours													Ped1	Ped2	Ped3	Ped4
Traffic Input		NB		SB				WB		EB			NS	NS	EW	EW
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	56	600	0	0	661	51	0	0	0	90	0	242	5	5	5	5
8:00 - 9:00	42	451	0	0	497	38	0	0	0	68	0	182	5	5	5	5
12:00 - 13:00	112	529	0	0	399	73	0	0	0	38	0	73	5	5	5	5
13:00 - 14:00	120	569	0	0	429	78	0	0	0	41	0	79	5	5	5	5
16:00 - 17:00	160	759	0	0	572	104	0	0	0	54	0	105	5	5	5	5
17:00 - 18:00	150	712	0	0	536	98	0	0	0	51	0	98	5	5	5	5
Total (6-hour peak)	640	3,620	0	0	3,094	442	0	0	0	342	0	779	30	30	30	30
Average (6-hour peak)	107	603	0	0	516	74	0	0	0	57	0	130	5	5	5	5

Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada



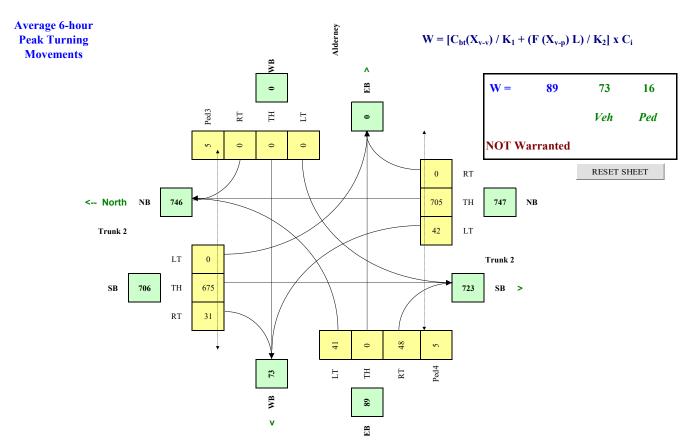
Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)

Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n


Other input		Speed (Km/h)	Truck	Bus Rt (v/n)	Median (m)
		(Km/n)	%0	(y/n)	(m)
Trunk 2	NS	60	5.0%	n	0.0
Elmwood	EW		5.0%	n	

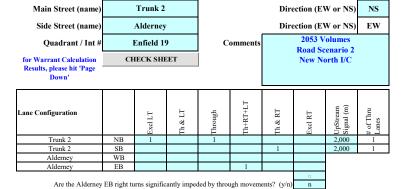
Set Peak Hours													Ped1	Ped2	Ped3	Ped4
Traffic Input		NB			SB			WB			EB		NS	NS	EW	EW
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	56	630	0	0	735	55	0	0	0	93	0	242	5	5	5	5
8:00 - 9:00	42	474	0	0	553	41	0	0	0	70	0	182	5	5	5	5
12:00 - 13:00	112	572	0	0	427	75	0	0	0	40	0	73	5	5	5	5
13:00 - 14:00	120	616	0	0	459	80	0	0	0	43	0	79	5	5	5	5
16:00 - 17:00	160	821	0	0	612	107	0	0	0	57	0	105	5	5	5	5
17:00 - 18:00	150	770	0	0	574	100	0	0	0	53	0	98	5	5	5	5
Total (6-hour peak)	640	3,883	0	0	3,360	458	0	0	0	356	0	779	30	30	30	30
Average (6-hour peak)	107	647	0	0	560	76	0	0	0	59	0	130	5	5	5	5

Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada



Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)

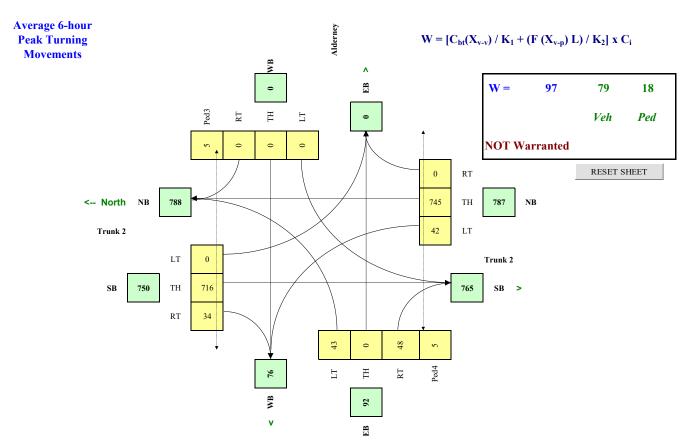
Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n


Other input		Speed	Truck	Bus Rt	Median
		(Km/h)	%	(y/n)	(m)
Trunk 2	NS	60	5.0%	n	0.0
Aldernev	EW		5.0%	n	

Set Peak Hours	et Peak Hours										Ped1	Ped2	Ped3	Ped4		
Traffic Input		NB		SB				WB			EB		NS	NS	EW	EW
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	24	563	0	0	999	29	0	0	0	51	0	88	5	5	5	5
8:00 - 9:00	18	423	0	0	751	22	0	0	0	38	0	66	5	5	5	5
12:00 - 13:00	43	668	0	0	473	28	0	0	0	32	0	28	5	5	5	5
13:00 - 14:00	47	719	0	0	509	30	0	0	0	35	0	30	5	5	5	5
16:00 - 17:00	62	958	0	0	679	40	0	0	0	46	0	40	5	5	5	5
17:00 - 18:00	58	898	0	0	637	38	0	0	0	43	0	38	5	5	5	5
Total (6-hour peak)	252	4,229	0	0	4,048	187	0	0	0	245	0	290	30	30	30	30
Average (6-hour peak)	42	705	0	0	675	31	0	0	0	41	0	48	5	5	5	5

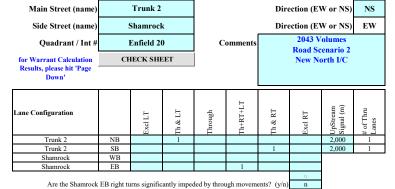
Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada

TAC



Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)

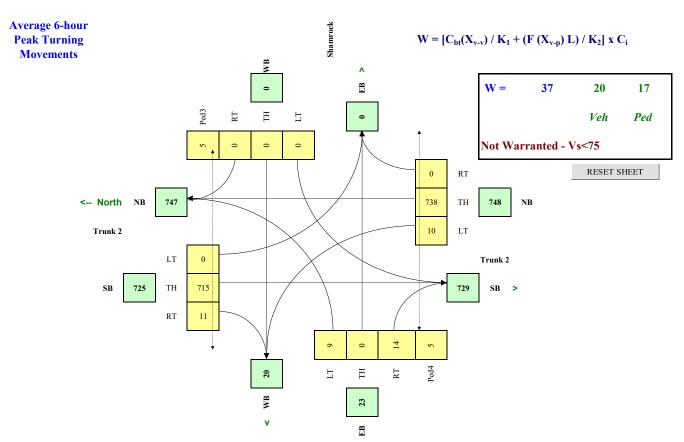
Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n


Othe	er input		Speed (Km/h)	Truck %	Bus Rt (y/n)	Median (m)
	Trunk 2	NS	60	5.0%	n	0.0
	Alderney	EW		5.0%	n	

Set Peak Hours											Ped1	Ped2	Ped3	Ped4		
Traffic Input		NB			SB			WB			EB		NS	NS	EW	EW
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	24	591	0	0	1069	33	0	0	0	53	0	88	5	5	5	5
8:00 - 9:00	18	444	0	0	804	25	0	0	0	40	0	66	5	5	5	5
12:00 - 13:00	43	708	0	0	499	30	0	0	0	34	0	28	5	5	5	5
13:00 - 14:00	47	761	0	0	537	32	0	0	0	37	0	30	5	5	5	5
16:00 - 17:00	62	1015	0	0	716	43	0	0	0	49	0	40	5	5	5	5
17:00 - 18:00	58	952	0	0	672	40	0	0	0	46	0	38	5	5	5	5
Total (6-hour peak)	252	4,471	0	0	4,297	203	0	0	0	259	0	290	30	30	30	30
Average (6-hour peak)	42	745	0	0	716	34	0	0	0	43	0	48	5	5	5	5

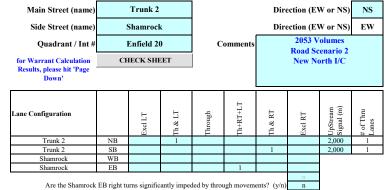
Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada

TAC



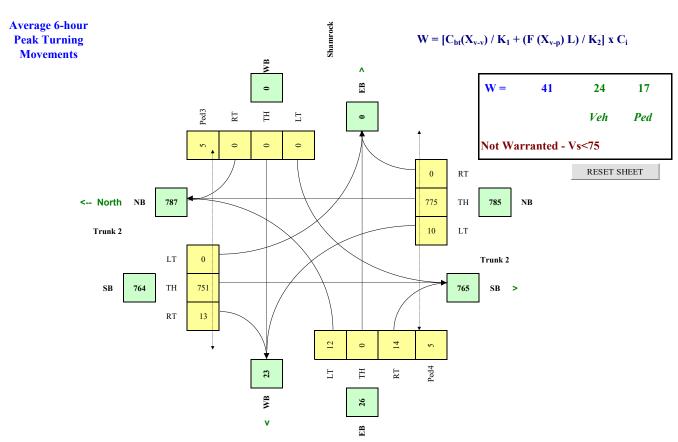
Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)

Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n


ſ	Other input		Speed (Km/h)	Truck %	Bus Rt (v/n)	Median (m)
ľ	Trunk 2	NS	60	5.0%	n	0.0
Γ	Shamrock	EW		5.0%	n	

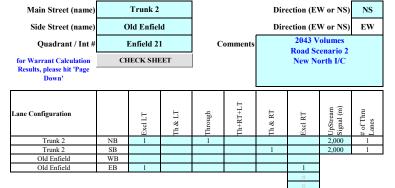
Set Peak Hours												Ped1	Ped2	Ped3	Ped4	
Traffic Input		NB			SB			WB			EB		NS	NS	EW	EW
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	5	579	0	0	1079	11	0	0	0	9	0	32	5	5	5	5
8:00 - 9:00	4	435	0	0	811	8	0	0	0	7	0	24	5	5	5	5
12:00 - 13:00	10	703	0	0	494	9	0	0	0	8	0	6	5	5	5	5
13:00 - 14:00	11	756	0	0	531	10	0	0	0	9	0	6	5	5	5	5
16:00 - 17:00	15	1008	0	0	708	13	0	0	0	12	0	8	5	5	5	5
17:00 - 18:00	14	945	0	0	664	12	0	0	0	11	0	8	5	5	5	5
Total (6-hour peak)	59	4,426	0	0	4,287	63	0	0	0	56	0	84	30	30	30	30
Average (6-hour peak)	10	738	0	0	715	11	0	0	0	9	0	14	5	5	5	5

Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada



Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)

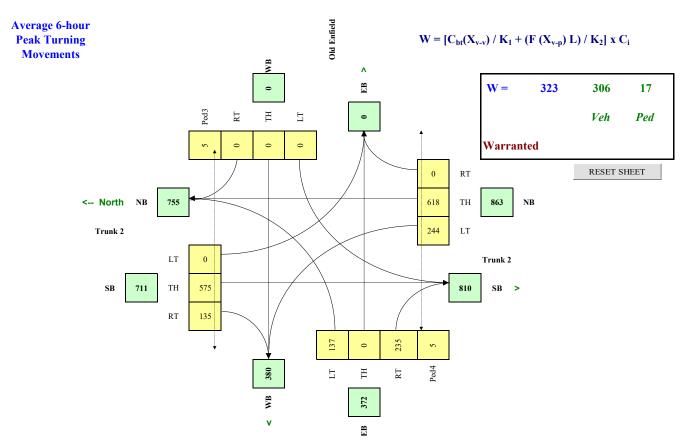
Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n


Other input		Speed	Truck	Bus Rt	Median
		(Km/h)	%	(y/n)	(m)
Trunk 2	NS	60	5.0%	n	0.0
Shamrock	EW		5.0%	n	

Set Peak Hours															Ped3	Ped4
Traffic Input	NB			SB			WB			EB		NS	NS	EW	EW	
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	5	602	0	0	1142	15	0	0	0	12	0	32	5	5	5	5
8:00 - 9:00	4	453	0	0	859	11	0	0	0	9	0	24	5	5	5	5
12:00 - 13:00	10	740	0	0	516	11	0	0	0	10	0	6	5	5	5	5
13:00 - 14:00	11	797	0	0	555	12	0	0	0	11	0	6	5	5	5	5
16:00 - 17:00	15	1062	0	0	740	16	0	0	0	15	0	8	5	5	5	5
17:00 - 18:00	14	996	0	0	694	15	0	0	0	14	0	8	5	5	5	5
Total (6-hour peak)	59	4,650	0	0	4,506	80	0	0	0	71	0	84	30	30	30	30
Average (6-hour peak)	10	775	0	0	751	13	0	0	0	12	0	14	5	5	5	5

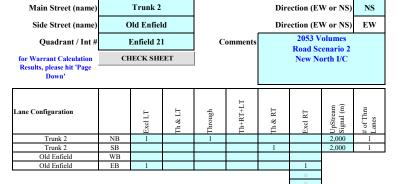
Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada

TAC



Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)

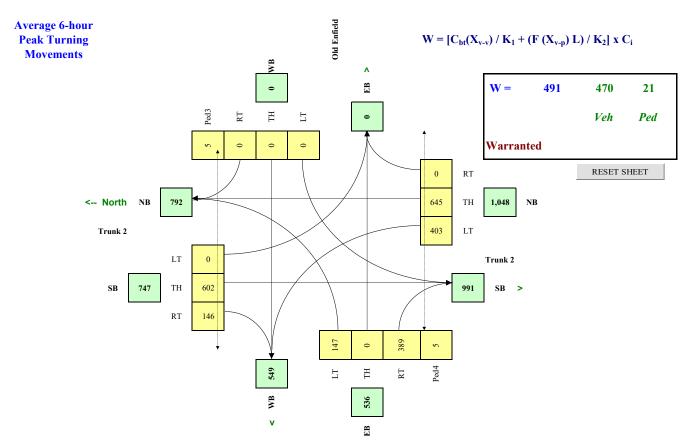
Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n


Other input		Speed	Truck	Bus Rt	Median
		(Km/h)	%	(y/n)	(m)
Trunk 2	NS	60	5.0%	n	0.0
Old Enfield	EW		5.0%	n	

Set Peak Hours													Ped1	Ped2	Ped3	Ped4
Traffic Input	NB			SB			WB			EB		NS	NS	EW	EW	
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	118	363	0	0	1033	109	0	0	0	198	0	454	5	5	5	5
8:00 - 9:00	89	273	0	0	777	82	0	0	0	149	0	341	5	5	5	5
12:00 - 13:00	259	633	0	0	338	128	0	0	0	98	0	126	5	5	5	5
13:00 - 14:00	279	681	0	0	364	137	0	0	0	105	0	136	5	5	5	5
16:00 - 17:00	372	908	0	0	485	183	0	0	0	140	0	181	5	5	5	5
17:00 - 18:00	349	852	0	0	455	172	0	0	0	131	0	170	5	5	5	5
Total (6-hour peak)	1,466	3,710	0	0	3,452	811	0	0	0	821	0	1,408	30	30	30	30
Average (6-hour peak)	244	618	0	0	575	135	0	0	0	137	0	235	5	5	5	5

Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada

TAC



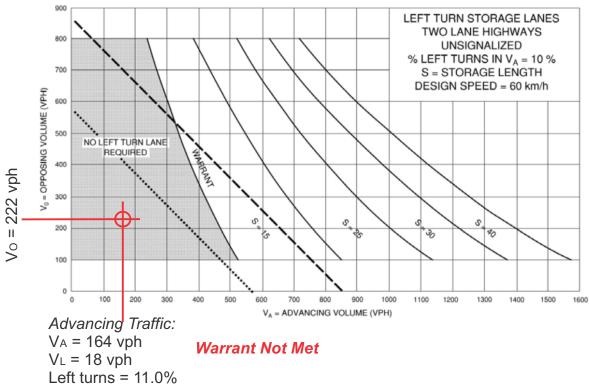
Road Authority:	NSDPW
City:	Mun. of East Hants
Analysis Date:	Dec 2023
Count Date:	June 2023
Date Entry Format:	(yyyy-mm-dd)

Demographics		
Elem. School/Mobility Challenged	(y/n)	n
Senior's Complex	(y/n)	n
Pathway to School	(y/n)	n
Metro Area Population	(#)	20,000
Central Business District	(y/n)	n

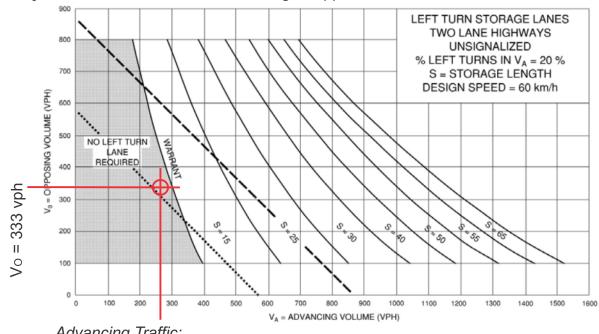
Other input		Speed	Truck	Bus Rt	Median
		(Km/h)	%	(y/n)	(m)
Trunk 2	NS	60	5.0%	n	0.0
Old Enfield	FW		5.0%	n	

Set Peak Hours													Ped1	Ped2	Ped3	Ped4
Traffic Input	NB			SB			WB			EB		NS	NS	EW	EW	
	LT	Th	RT	LT	Th	RT	LT	Th	RT	LT	Th	RT	W Side	E Side	N Side	S Side
7:00 - 8:00	203	374	0	0	1087	120	0	0	0	210	0	714	5	5	5	5
8:00 - 9:00	153	281	0	0	817	90	0	0	0	158	0	537	5	5	5	5
12:00 - 13:00	425	662	0	0	351	137	0	0	0	106	0	223	5	5	5	5
13:00 - 14:00	457	713	0	0	378	147	0	0	0	114	0	240	5	5	5	5
16:00 - 17:00	609	950	0	0	504	196	0	0	0	152	0	320	5	5	5	5
17:00 - 18:00	571	891	0	0	473	184	0	0	0	143	0	300	5	5	5	5
Total (6-hour peak)	2,418	3,871	0	0	3,610	874	0	0	0	883	0	2,334	30	30	30	30
Average (6-hour peak)	403	645	0	0	602	146	0	0	0	147	0	389	5	5	5	5

Traffic Signal Warrant Spreadsheet - v3H © 2007 Transportation Association of Canada



Appendix V

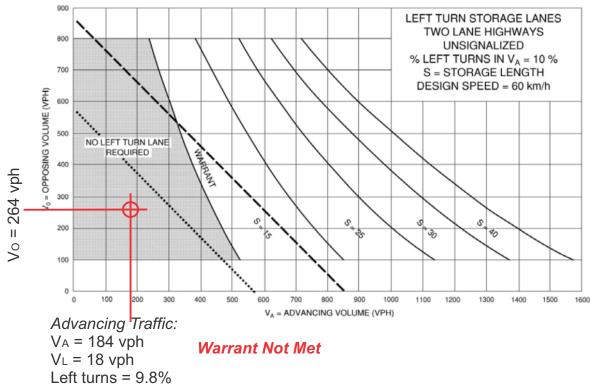

Auxiliary Turn Lane Assessment Results

2033 Traffic Volumes - Option 1 Network #1 - Trunk 2/Milford Rd - Southbound Left Turn

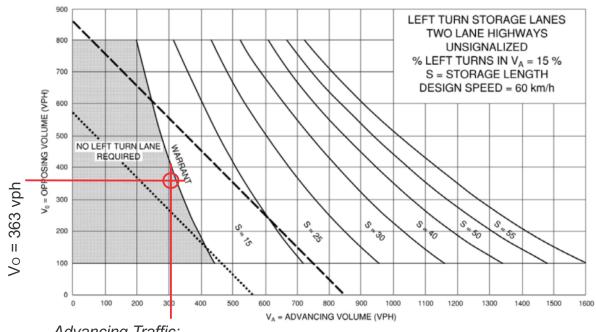
Weekday AM Peak Hour - MTO 2017 Design Supplement Exhibit 9A-6:

Weekday PM Peak Hour - MTO 2017 Design Supplement Exhibit 9A-7:

Advancing Traffic: $V_A = 261 \text{ vph}$


V_L = 52 vph

Left turns = 19.9%

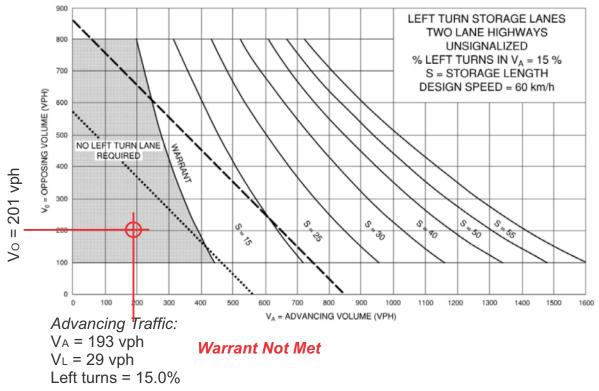

Warrant Not Met

2043 Traffic Volumes - Option 1 Network #1 - Trunk 2/Milford Rd - Southbound Left Turn

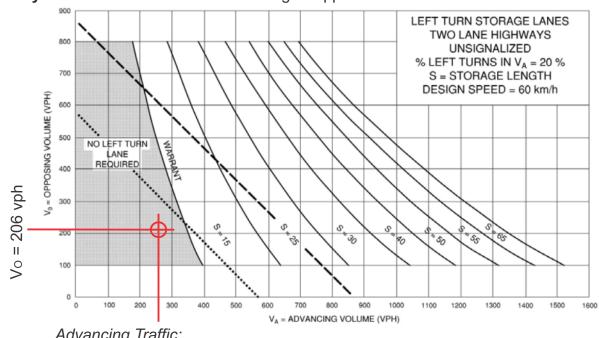
Weekday AM Peak Hour - MTO 2017 Design Supplement Exhibit 9A-6:

Weekday PM Peak Hour - MTO 2017 Design Supplement Exhibit 9A-7:

Advancing Traffic: V_A = 303 vph


V∟ = 52 vph

Left turns = 17.2%


Warrant Not Met

2033 Traffic Volumes - Option 1 Network #2 - Trunk 2/FH Street A - Northbound Left Turn

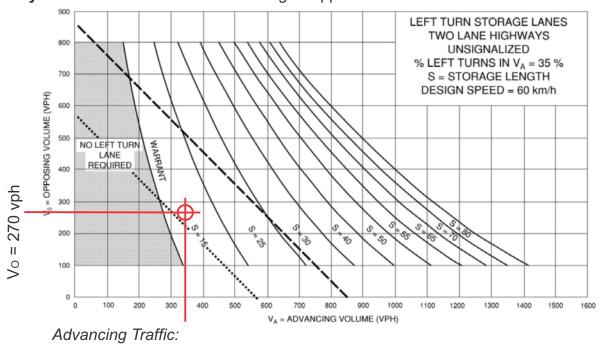
Weekday AM Peak Hour - MTO 2017 Design Supplement Exhibit 9A-7:

Weekday PM Peak Hour - MTO 2017 Design Supplement Exhibit 9A-7:

Advancing Traffic: V_A = 258 vph

V_L = 58 vph

Left turns = 22.4%


Warrant Not Met

2043 Traffic Volumes - Option 1 Network #2 - Trunk 2/FH Street A - Northbound Left Turn

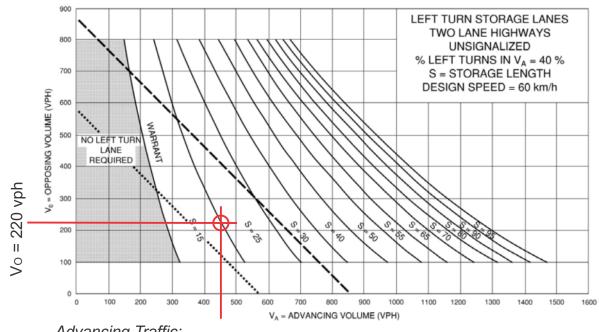
Weekday AM Peak Hour - MTO 2017 Design Supplement Exhibit 9A-7:

(warrant met in PM Peak Hour)

Weekday PM Peak Hour - MTO 2017 Design Supplement Exhibit 9A-9:

 $V_A = 340 \text{ vph}$

 $V_L = 114 \text{ vph}$


Left turns = 33.5%

2033 Traffic Volumes - Option 1 Network #3 - Trunk 2/Robert Scott - Northbound Left Turn

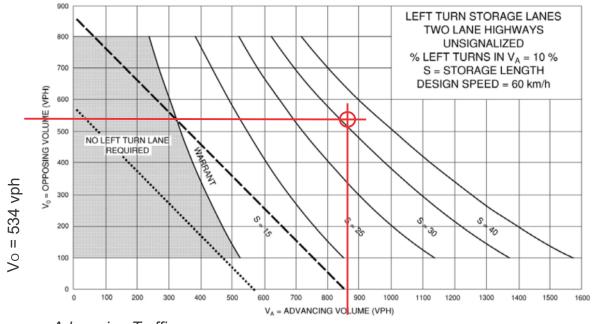
Weekday AM Peak Hour - MTO 2017 Design Supplement Exhibit 9A-7:

n/a (warrant met in PM Peak Hour)

Weekday PM Peak Hour - MTO 2017 Design Supplement Exhibit 9A-9:

Advancing Traffic: $V_A = 445 \text{ vph}$

V_L = 177 vph


Left turns = 39.8%

2033 Traffic Volumes - Option 1 Network #5 - Trunk 2/Frederick Allen - Northbound Left Turn

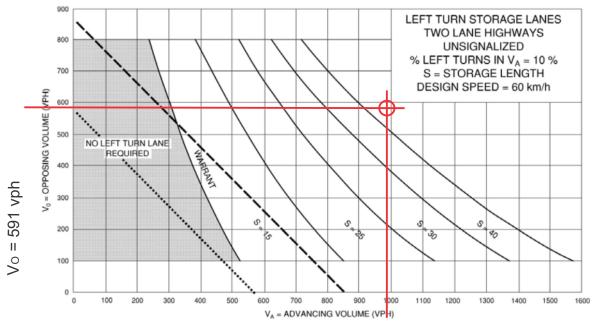
Weekday AM Peak Hour - MTO 2017 Design Supplement Exhibit 9A-7:

n/a (warrant met in PM Peak Hour)

Weekday PM Peak Hour - MTO 2017 Design Supplement Exhibit 9A-6:

Advancing Traffic: V_A = 868 vph

V∟ = 68 vph

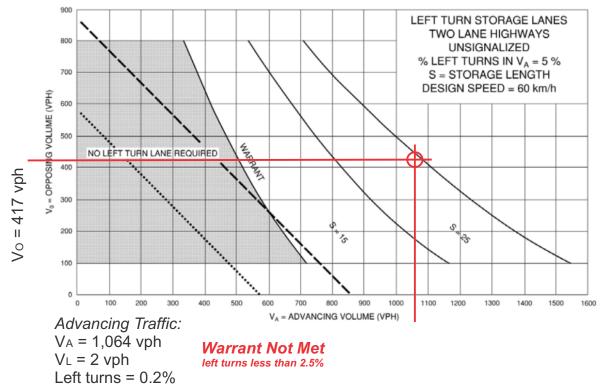

Left turns = 7.8%

2033 Traffic Volumes - Option 1 Network #6 - Trunk 2/Poplar Dr - Northbound Left Turn

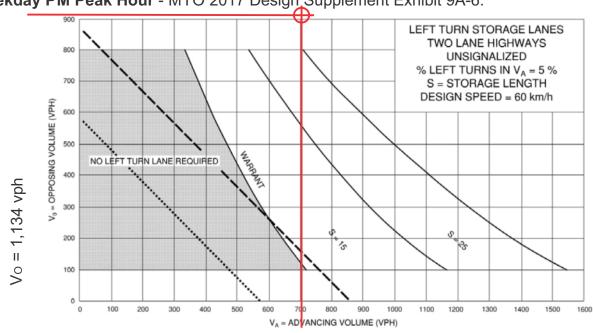
Weekday AM Peak Hour - MTO 2017 Design Supplement Exhibit 9A-7:

n/a (warrant met in PM Peak Hour)

Weekday PM Peak Hour - MTO 2017 Design Supplement Exhibit 9A-6:



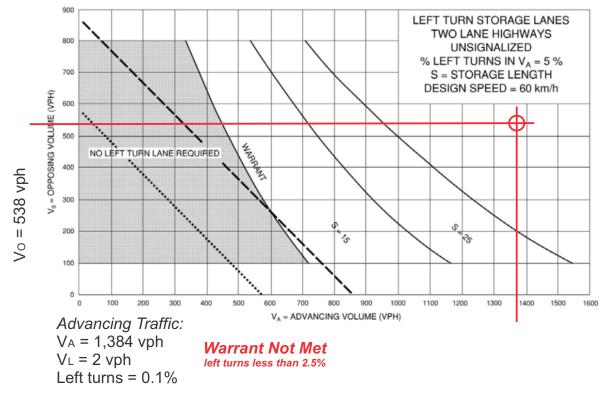
Advancing Traffic: V_A = 990 vph


V_L = 113 vph Left turns = 11.4%

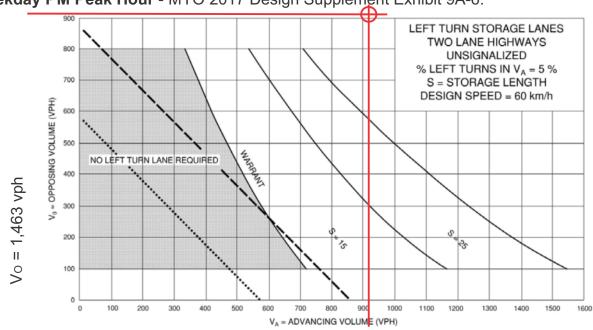
2033 Traffic Volumes - Option 1 Network #8 - Trunk 2/Church St - Southbound Left Turn

Weekday AM Peak Hour - MTO 2017 Design Supplement Exhibit 9A-6:

Weekday PM Peak Hour - MTO 2017 Design Supplement Exhibit 9A-6:


Advancing Traffic: $V_A = 702 \text{ vph}$

 $V_L = 1 \text{ vph}$ Left turns = 0.1%


Warrant Not Met left turns less than 2.5%

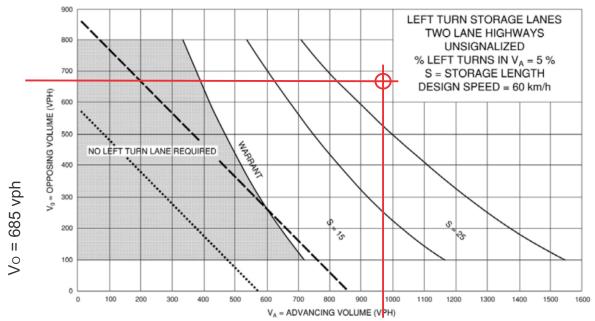
2043 Traffic Volumes - Option 1 Network #8 - Trunk 2/Church St - Southbound Left Turn

Weekday AM Peak Hour - MTO 2017 Design Supplement Exhibit 9A-6:

Weekday PM Peak Hour - MTO 2017 Design Supplement Exhibit 9A-6:

Advancing Traffic: V_A = 914 vph V_L = 1 vph

Left turns = 0.1%

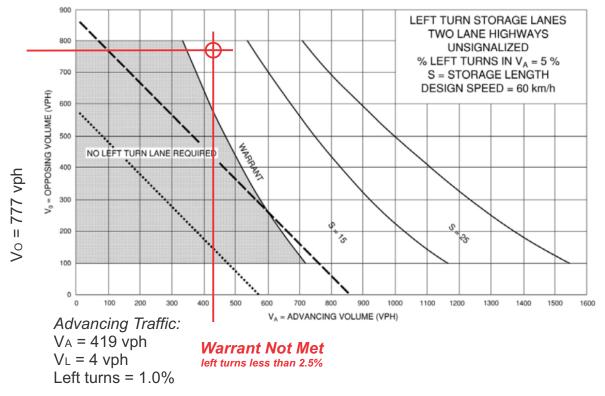

Warrant Not Met left turns less than 2.5%

2033 Traffic Volumes - Option 1 Network #19 - Trunk 2/Alderney Dr - Northbound Left Turn

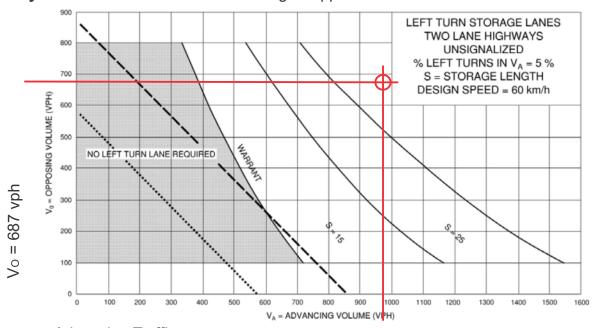
Weekday AM Peak Hour - MTO 2017 Design Supplement Exhibit 9A-7:

n/a (warrant met in PM Peak Hour)

Weekday PM Peak Hour - MTO 2017 Design Supplement Exhibit 9A-6:



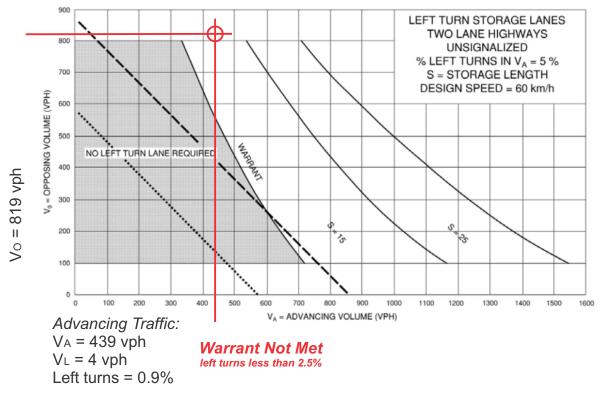
Advancing Traffic: V_A = 970 vph V_L = 62 vph


Left turns = 6.4%

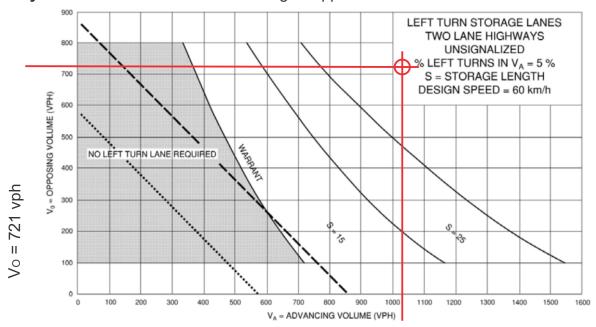
2033 Traffic Volumes - Option 1 Network #20 - Trunk 2/Shamrock - Northbound Left Turn

Weekday AM Peak Hour - MTO 2017 Design Supplement Exhibit 9A-6:

Weekday PM Peak Hour - MTO 2017 Design Supplement Exhibit 9A-6:


Advancing Traffic: V_A = 977 vph V_L = 15 vph

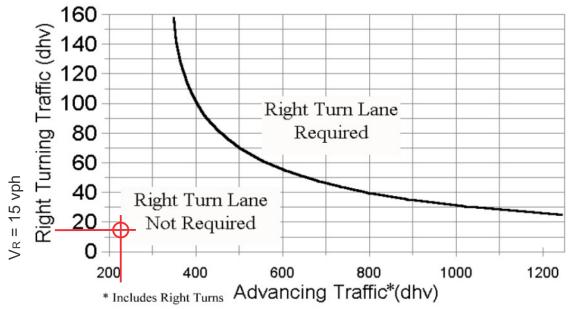
Left turns = 1.5%


Warrant Not Met left turns less than 2.5%

2043 Traffic Volumes - Option 1 Network #20 - Trunk 2/Shamrock - Northbound Left Turn

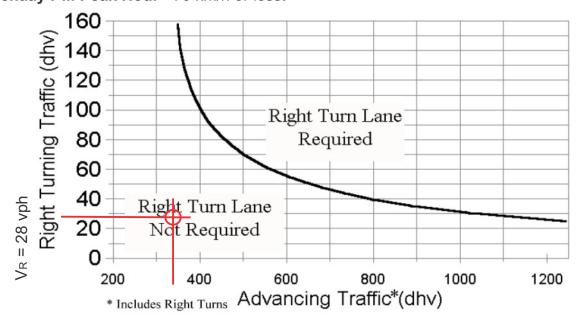
Weekday AM Peak Hour - MTO 2017 Design Supplement Exhibit 9A-6:

Weekday PM Peak Hour - MTO 2017 Design Supplement Exhibit 9A-6:



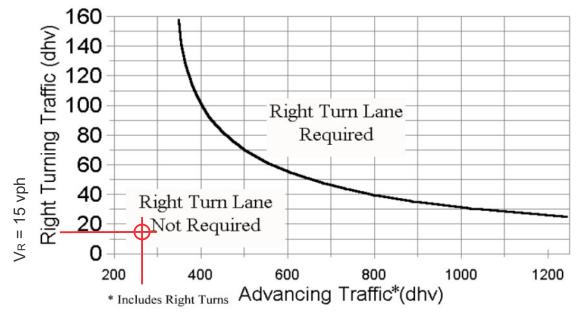
Advancing Traffic: $V_A = 1,023 \text{ vph}$ $V_L = 15 \text{ vph}$ Left turns = 1.5%

Warrant Not Met left turns less than 2.5%

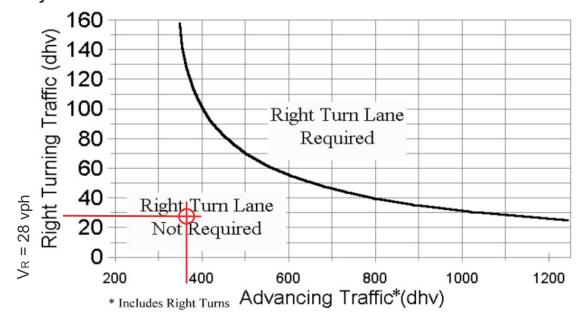

2033 Traffic Volumes - Option 1 Road Network #1 - Trunk 2 / Milford Rd - Northbound Right Turn

Weekday AM Peak Hour - 70 km/h or less:

Advancing Traffic: $V_A = 222 \text{ vph}$

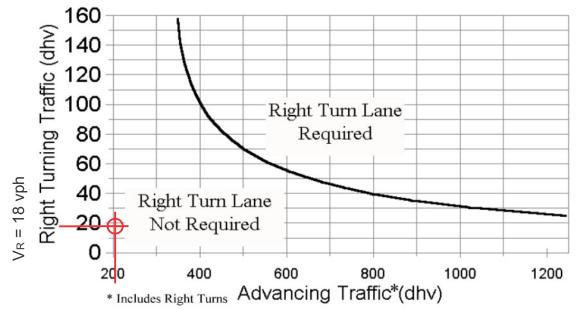

Weekday PM Peak Hour - 70 km/h or less:

Advancing Traffic: V_A = 333 vph

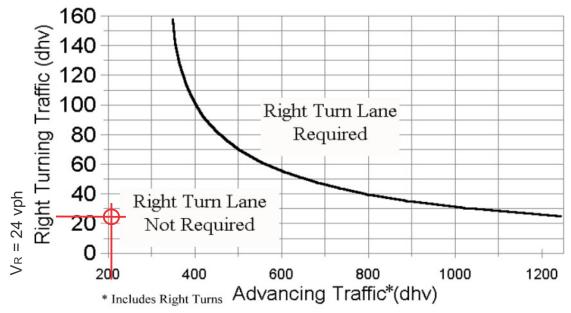

2043 Traffic Volumes - Option 1 Road Network #1 - Trunk 2 / Milford Rd - Northbound Right Turn

Weekday AM Peak Hour - 70 km/h or less:

Advancing Traffic: $V_A = 264 \text{ vph}$

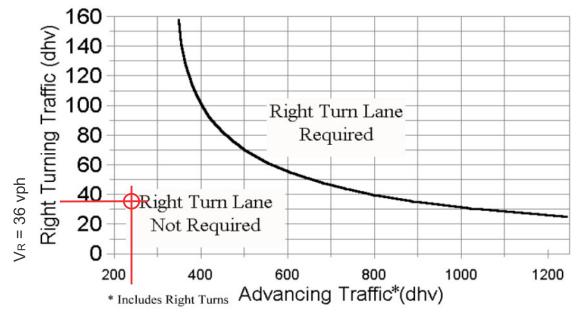

Weekday PM Peak Hour - 70 km/h or less:

Advancing Traffic: $V_A = 363 \text{ vph}$

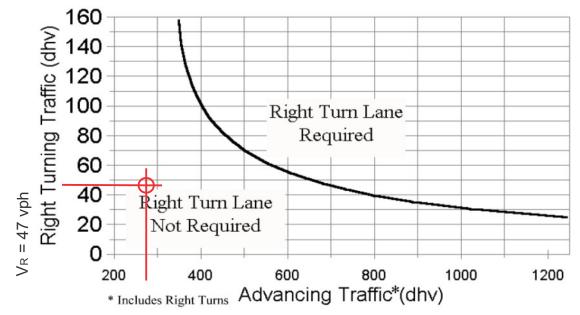

2033 Traffic Volumes - Option 1 Road Network #2 - Trunk 2 / FH Street A - Southbound Right Turn

Weekday AM Peak Hour - 70 km/h or less:

Advancing Traffic: $V_A = 201 \text{ vph}$

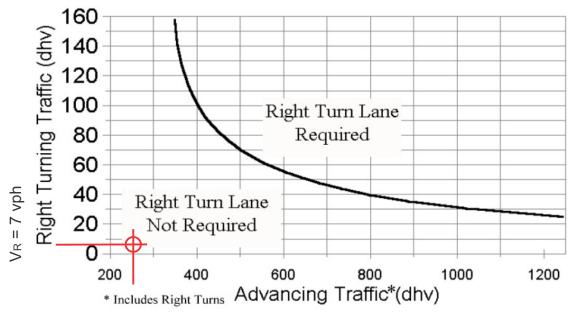

Weekday PM Peak Hour - 70 km/h or less:

Advancing Traffic: $V_A = 206 \text{ vph}$

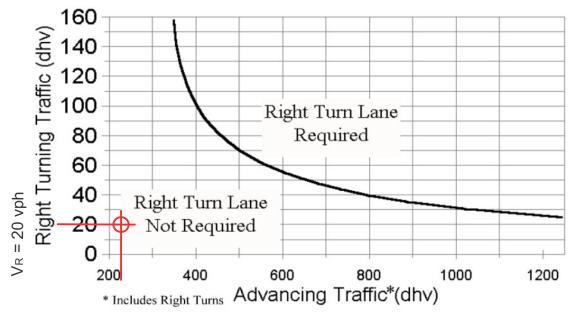

2043 Traffic Volumes - Option 1 Road Network #2 - Trunk 2 / FH Street A - Southbound Right Turn

Weekday AM Peak Hour - 70 km/h or less:

Advancing Traffic: $V_A = 238 \text{ vph}$

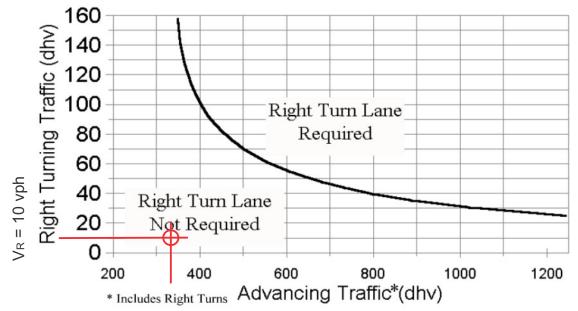

Weekday PM Peak Hour - 70 km/h or less:

Advancing Traffic: $V_A = 270 \text{ vph}$

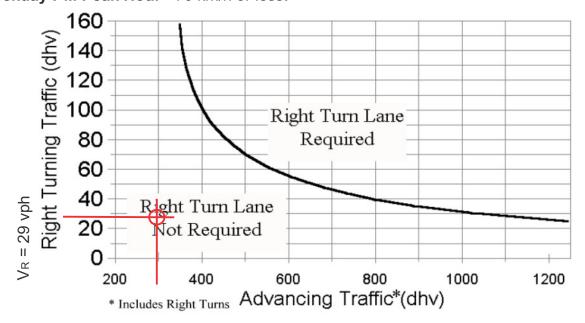

2033 Traffic Volumes - Option 1 Road Network #3 - Trunk 2 / Robert Scott - Southbound Right Turn

Weekday AM Peak Hour - 70 km/h or less:

Advancing Traffic: $V_A = 251 \text{ vph}$

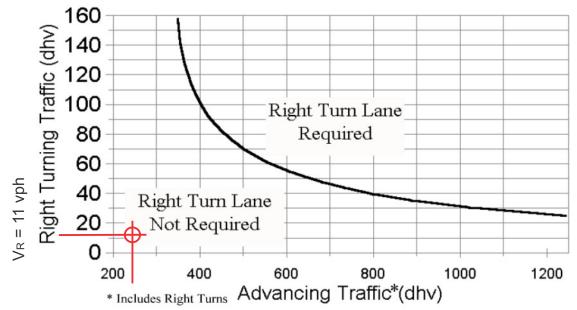

Weekday PM Peak Hour - 70 km/h or less:

Advancing Traffic: $V_A = 220 \text{ vph}$

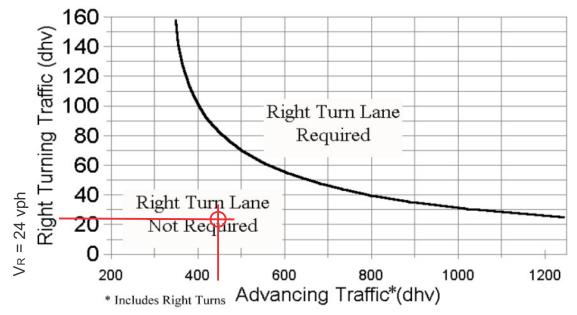

2043 Traffic Volumes - Option 1 Road Network #3 - Trunk 2 / Robert Scott - Southbound Right Turn

Weekday AM Peak Hour - 70 km/h or less:

Advancing Traffic: $V_A = 335 \text{ vph}$

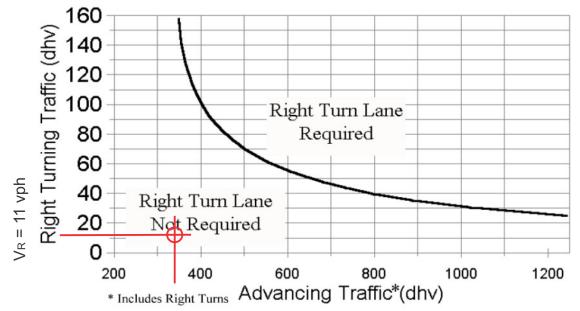

Weekday PM Peak Hour - 70 km/h or less:

Advancing Traffic: V_A = 298 vph

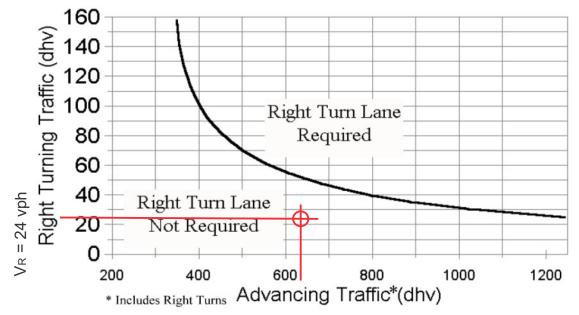

2033 Traffic Volumes - Option 1 Road Network #3 - Trunk 2 / Robert Scott - Northbound Right Turn

Weekday AM Peak Hour - 70 km/h or less:

Advancing Traffic: $V_A = 242 \text{ vph}$

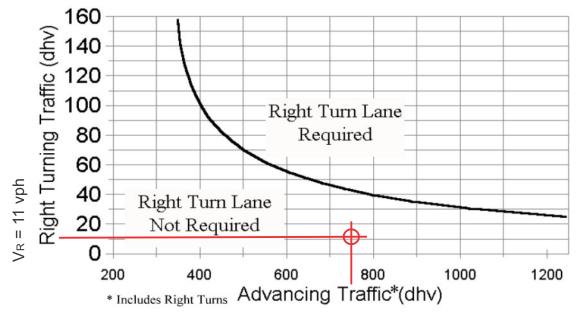

Weekday PM Peak Hour - 70 km/h or less:

Advancing Traffic: $V_A = 445 \text{ vph}$

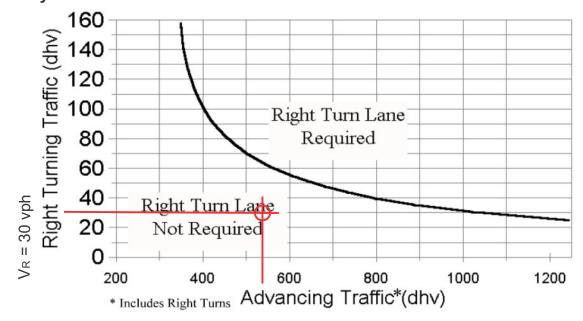

2043 Traffic Volumes - Option 1 Road Network #3 - Trunk 2 / Robert Scott - Northbound Right Turn

Weekday AM Peak Hour - 70 km/h or less:

Advancing Traffic: $V_A = 329 \text{ vph}$

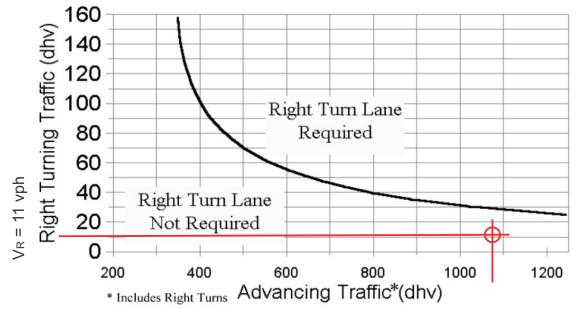

Weekday PM Peak Hour - 70 km/h or less:

Advancing Traffic: V_A = 632 vph

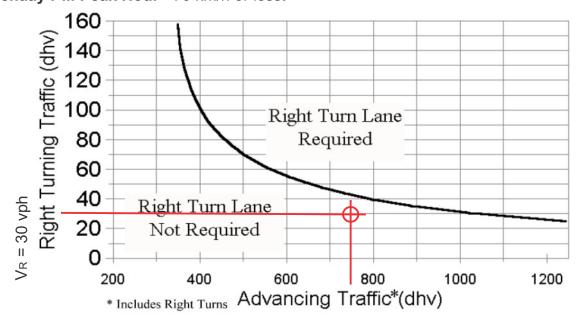

2033 Traffic Volumes - Option 1 Road Network #5 - Trunk 2 / Frederick Allen - Southbound Right Turn

Weekday AM Peak Hour - 70 km/h or less:

Advancing Traffic: $V_A = 747 \text{ vph}$

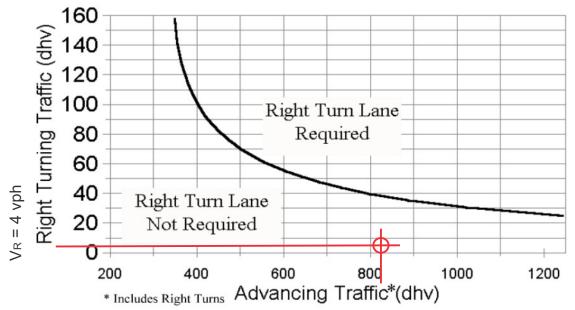

Weekday PM Peak Hour - 70 km/h or less:

Advancing Traffic: $V_A = 534 \text{ vph}$

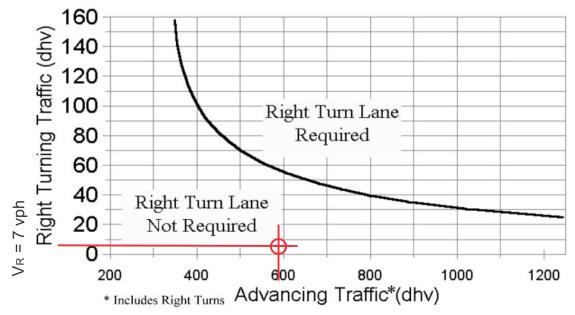

2043 Traffic Volumes - Option 1 Road Network #5 - Trunk 2 / Frederick Allen - Southbound Right Turn

Weekday AM Peak Hour - 70 km/h or less:

Advancing Traffic: $V_A = 1,072 \text{ vph}$

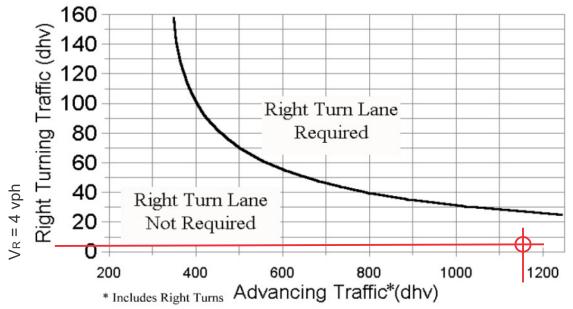

Weekday PM Peak Hour - 70 km/h or less:

Advancing Traffic: $V_A = 745 \text{ vph}$

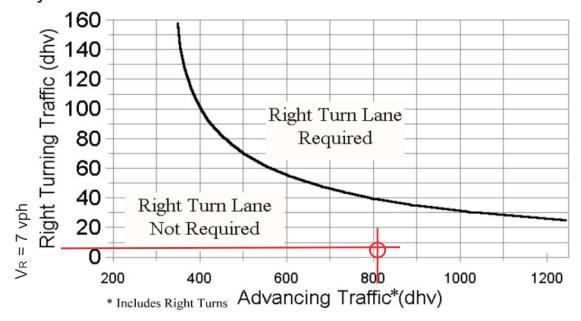

2033 Traffic Volumes - Option 1 Road Network #6 - Trunk 2 / Poplar Dr - Southbound Right Turn

Weekday AM Peak Hour - 70 km/h or less:

Advancing Traffic: $V_A = 825 \text{ vph}$

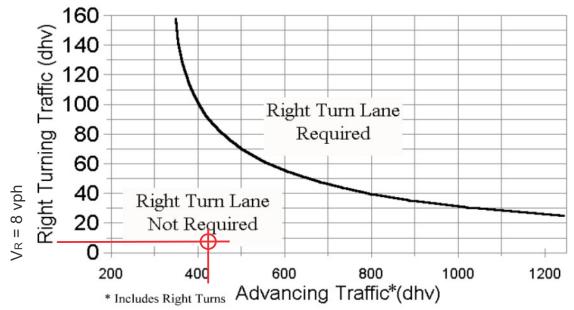

Weekday PM Peak Hour - 70 km/h or less:

Advancing Traffic: $V_A = 591 \text{ vph}$

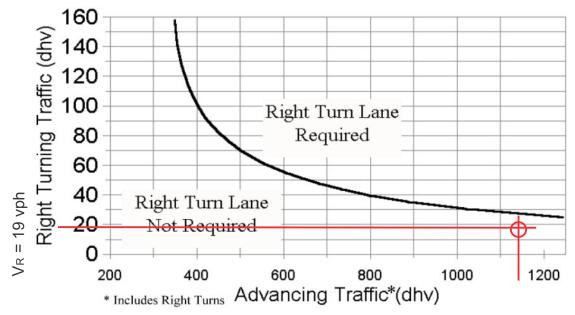

2043 Traffic Volumes - Option 1 Road Network #6 - Trunk 2 / Poplar Dr - Southbound Right Turn

Weekday AM Peak Hour - 70 km/h or less:

Advancing Traffic: $V_A = 1,150$ vph

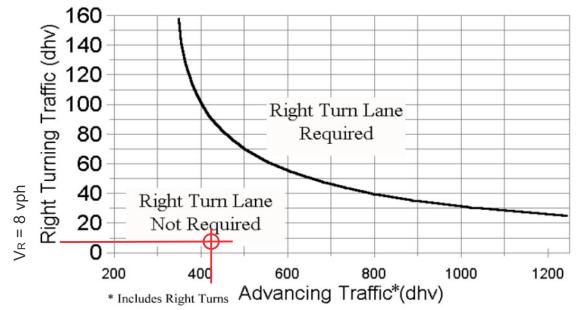

Weekday PM Peak Hour - 70 km/h or less:

Advancing Traffic: V_A = 803 vph

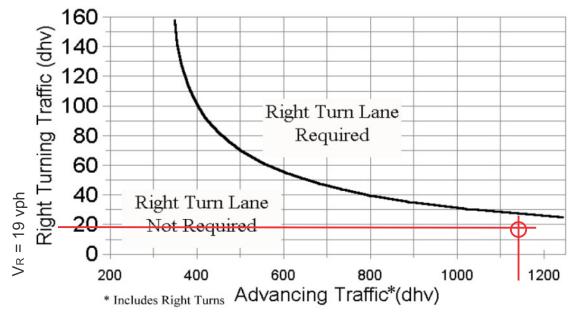

2033 Traffic Volumes - Option 1 Road Network #8 - Trunk 2 / Church - Northbound Right Turn

Weekday AM Peak Hour - 70 km/h or less:

Advancing Traffic: $V_A = 417 \text{ vph}$

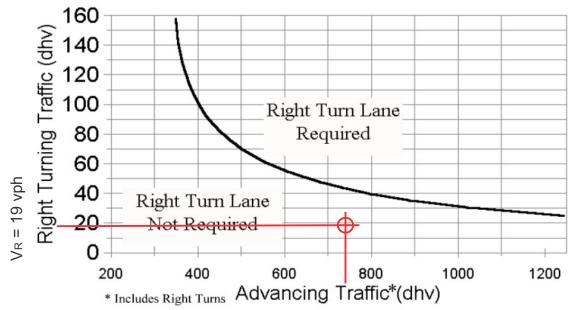

Weekday PM Peak Hour - 70 km/h or less:

Advancing Traffic: $V_A = 1,134 \text{ vph}$

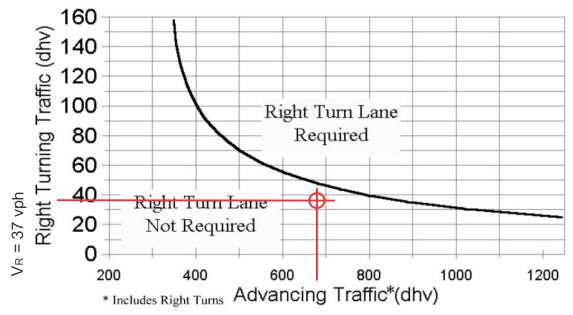

2043 Traffic Volumes - Option 1 Road Network #8 - Trunk 2 / Church - Northbound Right Turn

Weekday AM Peak Hour - 70 km/h or less:

Advancing Traffic: $V_A = 417 \text{ vph}$

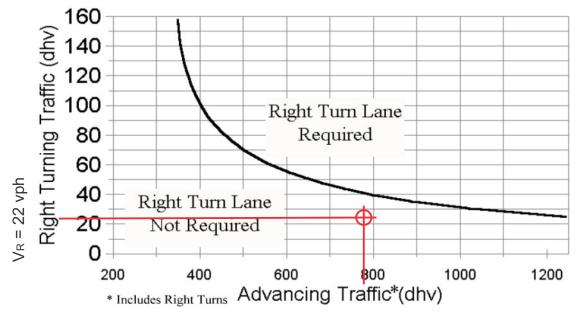

Weekday PM Peak Hour - 70 km/h or less:

Advancing Traffic: $V_A = 1,134 \text{ vph}$

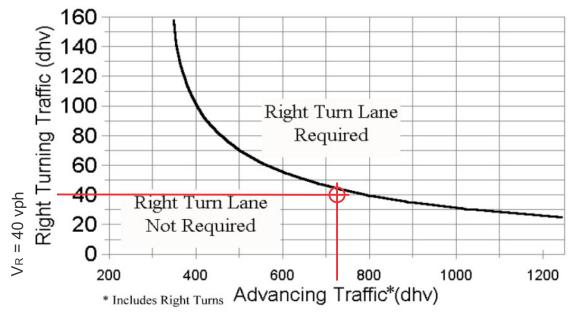

2033 Traffic Volumes - Option 1 Road Network #19 - Trunk 2 / Alderney - Southbound Right Turn

Weekday AM Peak Hour - 70 km/h or less:

Advancing Traffic: $V_A = 730 \text{ vph}$

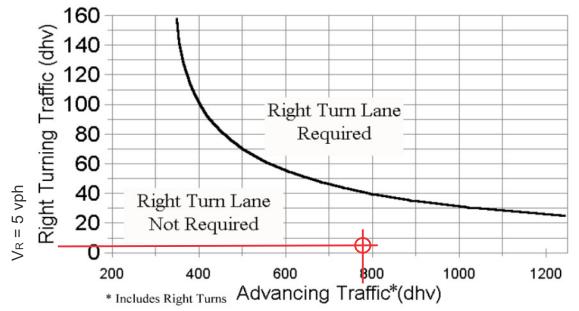

Weekday PM Peak Hour - 70 km/h or less:

Advancing Traffic: $V_A = 685 \text{ vph}$

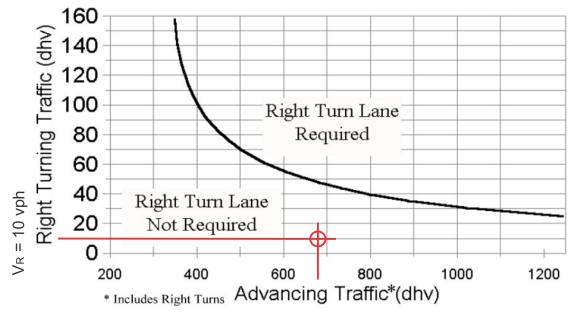

2043 Traffic Volumes - Option 1 Road Network #19 - Trunk 2 / Alderney - Southbound Right Turn

Weekday AM Peak Hour - 70 km/h or less:

Advancing Traffic: $V_A = 773 \text{ vph}$

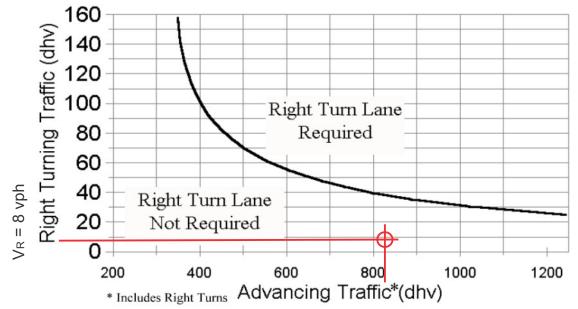

Weekday PM Peak Hour - 70 km/h or less:

Advancing Traffic: $V_A = 719 \text{ vph}$

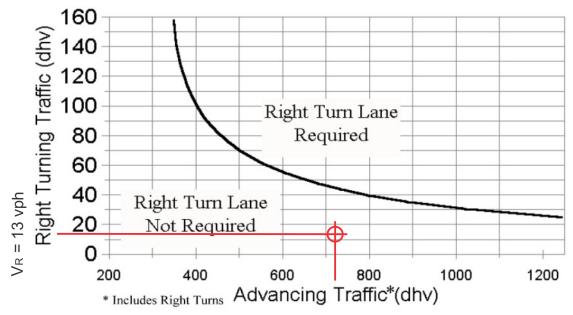

2033 Traffic Volumes - Option 1 Road Network #20 - Trunk 2 / Shamrock - Southbound Right Turn

Weekday AM Peak Hour - 70 km/h or less:

Advancing Traffic: $V_A = 777 \text{ vph}$


Weekday PM Peak Hour - 70 km/h or less:

Advancing Traffic: V_A = 687 vph


2043 Traffic Volumes - Option 1 Road Network #20 - Trunk 2 / Shamrock - Southbound Right Turn

Weekday AM Peak Hour - 70 km/h or less:

Advancing Traffic: $V_A = 819 \text{ vph}$

Weekday PM Peak Hour - 70 km/h or less:

Advancing Traffic: $V_A = 721 \text{ vph}$

Appendix VI

Peak Hour Intersection Capacity Reports

Intersection						
Intersection Int Delay, s/veh	1.5					
•						
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		Þ			ની
Traffic Vol, veh/h	9	39	207	15	18	146
Future Vol, veh/h	9	39	207	15	18	146
Conflicting Peds, #/hr	5	5	0	5	5	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	_	0	_	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	10	42	225	16	20	159
	-10	IL		- 13		.00
	Minor1		Major1		Major2	
Conflicting Flow All	442	243	0	0	246	0
Stage 1	238	-	-	-	-	-
Stage 2	204	-	-	-	-	-
Critical Hdwy	6.42	6.22	_	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	_	_	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	573	796	-	-	1320	-
Stage 1	802	-	-	_		-
Stage 2	830	-	_	_	_	_
Platoon blocked, %	300		_	_		_
Mov Cap-1 Maneuver	558	788	_	_	1313	_
Mov Cap-1 Maneuver	558	700		_	-	_
Stage 1	798		-	_	-	_
	812		-	-		-
Stage 2	012	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	10.3		0		0.9	
HCM LOS	В					
NA: 1 /N 4 4		NET	NES	MDL 4	051	OPT
Minor Lane/Major Mvn	nt	NBT		VBLn1	SBL	SBT
Capacity (veh/h)		-	-		1313	-
HCM Lane V/C Ratio		-	-		0.015	-
HCM Control Delay (s)		-	-	10.3	7.8	0
				_		
HCM Lane LOS HCM 95th %tile Q(veh		-	-	0.2	A 0	Α

Intersection						_
Int Delay, s/veh	1.9					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
	WBL	WDK		NDI	SDL	
Lane Configurations		5 0	205	20	E 0	€
Traffic Vol, veh/h	20	50	305	28	52	209
Future Vol, veh/h	20	50	305	28	52	209
Conflicting Peds, #/hr		5	_ 0	_ 5	_ 5	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storag	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	22	54	332	30	57	227
		_		_		
Major/Minor	Minor1		//ajor1		Major2	
Conflicting Flow All	698	357	0	0	367	0
Stage 1	352	-	-	-	-	-
Stage 2	346	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	_	-	-	-
Follow-up Hdwy		3.318	-	_	2.218	_
Pot Cap-1 Maneuver	407	687	_	_	1192	-
Stage 1	712	-	_	_		_
Stage 2	716	_			_	
Platoon blocked, %	110	_				_
	201	600	-	-	1100	-
Mov Cap-1 Maneuver		680	-	-	1186	-
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	708	-	-	-	-	-
Stage 2	673	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s			0		1.6	
HCM LOS	12.3 B		U		1.0	
I IOWI LOG	Б					
Minor Lane/Major Mvr	mt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	_	555	1186	-
HCM Lane V/C Ratio		_	_	0.137		_
HCM Control Delay (s	:)	_	_	12.5	8.2	0
HCM Lane LOS		_		12.3 B	Α	A
HCM 95th %tile Q(vel	2)	_	-	0.5	0.1	-
HOW SOUL WILLE CONTROL	1)	-	-	0.5	U. I	-

Intersection						
Int Delay, s/veh	1.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	***		₽			4
Traffic Vol, veh/h	9	39	249	15	18	166
Future Vol, veh/h	9	39	249	15	18	166
Conflicting Peds, #/hr	5	5	0	5	5	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storag	e,# 0	-	0	-	-	0
Grade, %	0	_	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	10	42	271	16	20	180
IVIVIIILI IOW	10	72	211	10	20	100
Major/Minor	Minor1	N	//ajor1		Major2	
Conflicting Flow All	509	289	0	0	292	0
Stage 1	284	-	-	-	-	-
Stage 2	225	_	_	_	_	-
Critical Hdwy	6.42	6.22	_	_	4.12	_
Critical Hdwy Stg 1	5.42	-	_	_	-	_
Critical Hdwy Stg 2	5.42	_	_	_	_	_
Follow-up Hdwy	3.518		_	_	2.218	_
Pot Cap-1 Maneuver	524	750	_	_	1270	_
Stage 1	764	- 100	_	_	1210	_
	812	-	-	_		-
Stage 2	012	-	-	-	-	-
Platoon blocked, %	500	740	-	-	4004	-
Mov Cap-1 Maneuver		742	-	-	1264	-
Mov Cap-2 Maneuver	509	-	-	-	-	-
Stage 1	760	-	-	-	-	-
Stage 2	793	-	-	-	-	-
Approach	WB		NB		SB	
			0		0.8	
HCM LOS			U		0.0	
HCM LOS	В					
Minor Lane/Major Mvr	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		_			1264	
HCM Lane V/C Ratio		<u>-</u>		0.076		_
HCM Control Delay (s)	_	_		7.9	0
HCM Lane LOS	7	<u>-</u>	_	В	7.9 A	A
HCM 95th %tile Q(vel	.)			0.2	0	
	1)	-	-	0.2	U	-

Intersection						
Int Delay, s/veh	1.8					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
	WBL	WDN		NDI	ODL	
Lane Configurations		EΩ	225	20	E 0	વ
Traffic Vol, veh/h	20	50	335	28	52	251
Future Vol, veh/h	20	50	335	28	52	251
Conflicting Peds, #/hr	5	5	_ 0	_ 5	_ 5	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage,		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	22	54	364	30	57	273
NA=:==/N4:===	A: 4		1-:1		M-:0	
	/linor1		//ajor1		Major2	
Conflicting Flow All	776	389	0	0	399	0
Stage 1	384	-	-	-	-	-
Stage 2	392	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	366	659	-	-	1160	-
Stage 1	688	-	-	-	-	-
Stage 2	683	-	-	-	-	-
Platoon blocked, %			_	_		_
Mov Cap-1 Maneuver	341	652	-	_	1154	_
Mov Cap-2 Maneuver	341	-	_	_	-	_
Stage 1	685	_			_	_
Stage 2	640	_			_	
Slaye 2	040	_	_	_	<u>-</u>	-
Approach	WB		NB		SB	
HCM Control Delay, s	13.2		0		1.4	
HCM LOS	В					
Mineral and Marie Marie		NDT	NIDDY	VDL 4	ODI	OPT
Minor Lane/Major Mvmt		NBT	NRKA	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	517	1154	-
HCM Lane V/C Ratio		-	-	0.147		-
HCM Control Delay (s)		-	-	13.2	8.3	0
HCM Lane LOS		-		В	Α	Α
HCM 95th %tile Q(veh)		-	-	0.5	0.2	-

Intersection						
Int Delay, s/veh	2.6					
•						
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	N/			र्स	ĵ»	
Traffic Vol, veh/h	26	68	29	164	183	18
Future Vol, veh/h	26	68	29	164	183	18
Conflicting Peds, #/hr	5	5	5	0	0	5
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	28	74	32	178	199	20
N.A. ' /N.A.		_				
	Minor2		Major1		/lajor2	
Conflicting Flow All	461	219	224	0	-	0
Stage 1	214	-	-	-	-	-
Stage 2	247	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	559	821	1345	-	-	-
Stage 1	822	-	-	-	-	-
Stage 2	794	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	538	813	1338	-	-	-
Mov Cap-2 Maneuver	538	-	-	_	_	-
Stage 1	796	_	_	_	-	-
Stage 2	790	_	_	_	_	_
Jugo 2	, 50					
Approach	EB		NB		SB	
HCM Control Delay, s	10.9		1.2		0	
HCM LOS	В					
Minor Lane/Major Mvn	nt	NBL	NRT	EBLn1	SBT	SBR
	IL.					אומט
Capacity (veh/h)		1338	-	–	-	-
HCM Cartes Delay (2)		0.024		0.144	-	-
HCM Control Delay (s)		7.8	0	10.9	-	-
HCM Lane LOS	,	A	Α	В	-	-
HCM 95th %tile Q(veh)	0.1	-	0.5	-	-

Intersection						
Int Delay, s/veh	2.1					
•						
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	N/			4	f)	
Traffic Vol, veh/h	18	38	58	200	182	24
Future Vol, veh/h	18	38	58	200	182	24
Conflicting Peds, #/hr	5	5	5	0	0	5
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	20	41	63	217	198	26
Maiau/Minau	N 4: O		11-:1		A-:O	
	Minor2		Major1		/lajor2	
Conflicting Flow All	564	221	229	0	-	0
Stage 1	216	-	-	-	-	-
Stage 2	348	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy		3.318		-	-	-
Pot Cap-1 Maneuver	487	819	1339	-	-	-
Stage 1	820	-	-	-	-	-
Stage 2	715	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	456	811	1332	-	-	-
Mov Cap-2 Maneuver	456	-	-	-	-	-
Stage 1	772	_	-	-	-	-
Stage 2	711	_	-	-	_	-
A	ED		NID		00	
Approach	EB		NB		SB	
HCM Control Delay, s	11.1		1.8		0	
HCM LOS	В					
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1332	-		-	
HCM Lane V/C Ratio		0.047		0.094	_	
HCM Control Delay (s)		7.8	0	11.1	_	_
HCM Lane LOS		7.0 A	A	В	<u> </u>	_
HCM 95th %tile Q(veh	1	0.1		0.3		
now som whe d(ven)	U. I	-	0.3	-	-

Intersection						
Intersection Int Delay, s/veh	4.3					
IIIL Delay, 5/VeII						
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	- 14			र्स	₽	
Traffic Vol, veh/h	52	133	58	198	202	36
Future Vol, veh/h	52	133	58	198	202	36
Conflicting Peds, #/hr	5	5	5	0	0	5
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	57	145	63	215	220	39
	•					
	Minor2		Major1		//ajor2	
Conflicting Flow All	591	250	264	0	-	0
Stage 1	245	-	-	-	-	-
Stage 2	346	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	470	789	1300	-	-	-
Stage 1	796	-	-	-	-	-
Stage 2	716	_	_	-	_	-
Platoon blocked, %				_	_	_
Mov Cap-1 Maneuver	440	781	1293	_	_	_
Mov Cap-1 Maneuver	440	-	1230	_	<u>-</u>	_
Stage 1	748		_	_	_	_
Stage 2	712	_	-	_	_	_
Glaye Z	112	_	<u>-</u>	-	<u>-</u>	-
Approach	EB		NB		SB	
HCM Control Delay, s	13.2		1.8		0	
HCM LOS	В					
Minard and Maria Ad	-1	NDI	NDT	EDL 4	ODT	ODD
Minor Lane/Major Mvm	nt	NBL		EBLn1	SBT	SBR
Capacity (veh/h)		1293	-	~	-	-
				0 0 4 4	_	_
HCM Lane V/C Ratio		0.049		0.314	_	
HCM Lane V/C Ratio HCM Control Delay (s))	7.9	0	13.2	-	-
HCM Lane V/C Ratio						-

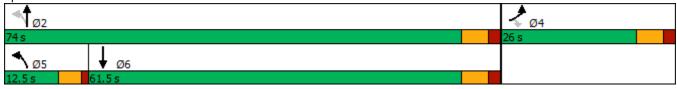
Intersection						
Int Delay, s/veh	3.4					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
		EDK	INDL			SDK
Lane Configurations	Y	75	444	4	\$	47
Traffic Vol, veh/h	36	75	114	226	223	47
Future Vol, veh/h	36	75	114	226	223	47
Conflicting Peds, #/hr		5	_ 5	_ 0	_ 0	_ 5
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storag	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	39	82	124	246	242	51
Major/Minor	Minor2		Major1		//ajor2	
Conflicting Flow All	772	278	298	0	-	0
Stage 1	273	-	-	-	-	-
Stage 2	499	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	_	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	368	761	1263	-	-	-
Stage 1	773	-	-	-	_	-
Stage 2	610	_	_	-	_	_
Platoon blocked, %	310			_	_	_
Mov Cap-1 Maneuver	323	753	1257	_	_	_
Mov Cap-1 Maneuver		133	1201		_	
	682	-	_	<u>-</u>		_
Stage 1		-	-	-	-	-
Stage 2	607	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s			2.7		0	
HCM LOS	В		۷.,			
1.5141 200						
Minor Lane/Major Mvi	mt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1257	-	526	-	-
HCM Lane V/C Ratio		0.099	_	0.229	_	-
HCM Control Delay (s	s)	8.2	0	13.9	-	-
HCM Lane LOS	,	Α	A	В	_	_
HCM 95th %tile Q(vel	ո)	0.3	-	0.9	_	_
TOW JOHN JUNIO Q(VE	'/	0.0		0.0		

Interception	
Intersection Int Delay, s/veh 4.6	
int Delay, S/Veri 4.6	
	SBR
Lane Configurations 4	
Traffic Vol, veh/h 17 1 166 24 1 2 56 175 11 4 240	7
Future Vol, veh/h 17 1 166 24 1 2 56 175 11 4 240	7
Conflicting Peds, #/hr 5 0 5 5 0 5 5 0	5
	Free
	None
Storage Length 15 15 -	-
Veh in Median Storage, # - 0 0 0	-
Grade, % - 0 0 0	-
Peak Hour Factor 92 92 92 92 92 92 92 92 92 92 92	92
Heavy Vehicles, % 2 2 2 2 2 2 2 2 2 2 2	2
Mvmt Flow 18 1 180 26 1 2 61 190 12 4 261	8
Major/Minor Minor2 Minor1 Major1 Major2	
Conflicting Flow All 603 607 275 692 605 206 274 0 0 207 0	0
Stage 1 278 278 - 323 323	-
Stage 2 325 329 - 369 282	_
Critical Hdwy 7.12 6.52 6.22 7.12 6.52 6.22 4.12 - 4.12 -	
Critical Hdwy Stg 1 6.12 5.52 - 6.12 5.52	_
Critical Hdwy Stg 2 6.12 5.52 - 6.12 5.52	_
Follow-up Hdwy 3.518 4.018 3.318 3.518 4.018 3.318 2.218 - 2.218 -	_
Pot Cap-1 Maneuver 411 411 764 358 412 835 1289 1364 -	_
Stage 1 728 680 - 689 650	_
Stage 2 687 646 - 651 678	_
Platoon blocked, %	_
Mov Cap-1 Maneuver 389 386 756 259 387 827 1282 1357 -	_
Mov Cap-2 Maneuver 389 386 - 259 387	_
Stage 1 690 675 - 653 616	_
Stage 2 648 612 - 491 673	_
5.00 5 12 10 1 010	
Arrest ED MD ND OD	
Approach EB WB NB SB	
HCM Control Delay, s 12.3 19.6 1.8 0.1	
HCM LOS B C	
Minor Lane/Major Mvmt NBL NBT NBR EBLn1WBLn1 SBL SBT SBR	
Capacity (veh/h) 1282 692 276 1357	
HCM Lane V/C Ratio 0.047 0.289 0.106 0.003	
HCM Control Delay (s) 7.9 - 12.3 19.6 7.7	
HCM Lane LOS A B C A	
HCM 95th %tile Q(veh) 0.1 1.2 0.4 0	

Intersection												
Int Delay, s/veh	4.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			ĵ.		ሻ	ĵ.	
Traffic Vol, veh/h	11	1	105	11	1	4	177	244	24	2	198	20
Future Vol, veh/h	11	1	105	11	1	4	177	244	24	2	198	20
Conflicting Peds, #/hr	5	0	5	5	0	5	5	0	5	5	0	5
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	_	-	None	-	-	None
Storage Length	-	-	-	-	-	-	15	-	-	15	-	-
Veh in Median Storage	е,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	12	1	114	12	1	4	192	265	26	2	215	22
Major/Minor	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	905	915	236	960	913	288	242	0	0	296	0	0
Stage 1	235	235	-	667	667	-		-	-	-	-	-
Stage 2	670	680	_	293	246	_	_	_	_	_	-	_
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	-	2.218	-	-
Pot Cap-1 Maneuver	257	273	803	236	273	751	1324	-	-	1265	-	-
Stage 1	768	710	-	448	457	-	-	-	-	-	-	-
Stage 2	446	451	-	715	703	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	224	230	795	177	230	743	1317	-	-	1259	-	-
Mov Cap-2 Maneuver	224	230	-	177	230	-	-	-	-	-	-	-
Stage 1	653	705	-	381	388	-	-	-	-	-	-	-
Stage 2	376	383	-	607	698	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	12.1			22.5			3.3			0.1		
HCM LOS	В			C								
Minor Lane/Major Mvn	nt	NBL	NBT	NRD	EBLn1\	MRI n1	SBL	SBT	SBR			
	π	1317		NDR	631	223	1259	301	אמט			
Capacity (veh/h) HCM Lane V/C Ratio			-	-		0.078		=	-			
		0.146	-	-	12.1	22.5		-	-			
HCM Control Delay (s) HCM Lane LOS			-	-		22.5 C	7.9	=	-			
	1	A	-	-	B		A	-	-			
HCM 95th %tile Q(veh)	0.5	-	-	0.7	0.3	0	-	-			

Intersection												
Int Delay, s/veh	7.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		*	ĵ.		ሻ	f.	
Traffic Vol, veh/h	26	1	268	24	1	2	90	228	11	4	321	10
Future Vol, veh/h	26	1	268	24	1	2	90	228	11	4	321	10
Conflicting Peds, #/hr	5	0	5	5	0	5	5	0	5	5	0	5
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	_	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	15	-	-	15	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	28	1	291	26	1	2	98	248	12	4	349	11
Major/Minor	Minor2			Minor1			Major1		1	Major2		
Conflicting Flow All	825	829	365	969	828	264	365	0	0	265	0	0
Stage 1	368	368	-	455	455	-	-	-	-		-	-
Stage 2	457	461	_	514	373	_	_	_	_	_	_	_
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	_	_	4.12	_	_
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-		_	_		_	_
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	_	_	_	_	-	_	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	_	_	2.218	_	_
Pot Cap-1 Maneuver	292	306	680	233	306	775	1194	-	-	1299	-	-
Stage 1	652	621	-	585	569	-		_	_	-	_	_
Stage 2	583	565	-	543	618	-	-	-	-	-	-	-
Platoon blocked, %	300	300		J. J	_ J. J			_	_		_	_
Mov Cap-1 Maneuver	269	277	673	122	277	767	1188	-	_	1292	-	_
Mov Cap-2 Maneuver	269	277	-	122	277		-	_	_		_	_
Stage 1	595	616	-	534	519	-	-	-	_	-	-	-
Stage 2	530	516	-	305	613	-	-	-	-	-	-	-
<u></u>												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	18			39.6			2.3			0.1		
HCM LOS	C			E			2.0			J. 1		
	<u> </u>											
Minor Lane/Major Mvm	nt	NBL	NBT	NBR	EBLn1\	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1188	_	_	592	133	1292	_				
HCM Lane V/C Ratio		0.082	_	_		0.221		_	_			
HCM Control Delay (s)		8.3	_	_	18	39.6	7.8	_	_			
HCM Lane LOS		Α	_	_	C	55.0 E	Α.	_	<u>-</u>			
HCM 95th %tile Q(veh)	0.3	_	_	3.2	0.8	0	_	_			
TOTAL COULT TOUR Q VOIT	7	0.0			0.2	0.0	0					

Intersection												
Int Delay, s/veh	6.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	LDL	4	LDR	WDL	₩	WDR	NDL	Tabi	אטוז	SDL 1) 	אמט
Traffic Vol, veh/h	16	++>	172	11	++>	4	288	320	24	2	267	29
Future Vol, veh/h	16	1	172	11	1	4	288	320	24	2	267	29
Conflicting Peds, #/hr	5	0	5	5	0	5	5	0	5	5	0	5
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	Olop -	Olop -	None	- Olop	- Olop	None	-	-	None	-	-	None
Storage Length	_	_	-	_	_	-	15	_	-	15	_	-
Veh in Median Storage		0	_	_	0	_	-	0	_	-	0	_
Grade, %	-	0	_	_	0	_	_	0	_	_	0	_
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	17	1	187	12	1	4	313	348	26	2	290	32
	••	•		•=	•	•	0.0	0.0		<u>-</u>		V _
Majay/Mina-	N 41:			\ 1: 1			Maissa			Mais		
	Minor2	4000		Minor1	4000		Major1			Major2		
Conflicting Flow All	1310	1320	316	1401	1323	371	327	0	0	379	0	0
Stage 1	315	315	-	992	992	-	-	-	-	-	-	-
Stage 2	995	1005	6.00	409	331	6.00	4 40	-	-	1.40	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	2 240	6.12	5.52	2 240	2 240	-	-	2 240	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	-	2.218	-	-
Pot Cap-1 Maneuver	136	157	724	118	156	675	1233	-	-	1179	-	-
Stage 1	696	656	-	296	324	-	-	-	-	-	-	-
Stage 2	295	319	-	619	645	-	-	-	-	-	-	-
Platoon blocked, %	106	116	717	60	115	668	1227	-	-	1170	-	-
Mov Cap-1 Maneuver	106	116	717	69	115	800	1221	-	-	1173	-	-
Mov Cap-2 Maneuver	106	116 651	-	69	115 240	-	-	-	-	-	-	-
Stage 1 Stage 2	516 216	236	-	219 454	640	-	-	-	-	-	-	-
Slaye 2	210	230	-	404	040	-	_	_	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	18.3			53			4.1			0.1		
HCM LOS	С			F								
Minor Lane/Major Mvm	nt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1227	_	_	473	92	1173	_	_			
HCM Lane V/C Ratio		0.255	_			0.189		_	_			
HCM Control Delay (s)		8.9	-	-	18.3	53	8.1	_	-			
HCM Lane LOS		Α	_	_	C	F	A	_	_			
HCM 95th %tile Q(veh)	1	-	-	2.2	0.7	0	-	-			
	1					V	_					

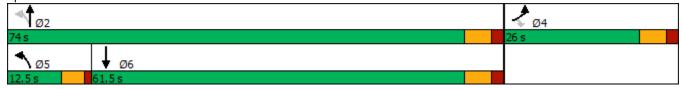

	•	•	•	†	+	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ	7	ሻ	<u> </u>	<u> </u>	ODIN
Traffic Volume (vph)	30	296	102	235	451	13
Future Volume (vph)	30	296	102	235	451	13
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7
Storage Length (m)	15.0	0.0	15.0	5.1	Ų.,	0.0
Storage Lanes	1	1	1			0.0
Taper Length (m)	7.6		7.6			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.99	0.96	1.00		1.00	
Frt	3.00	0.850	1.00		0.996	
Flt Protected	0.950	0.000	0.950		0.000	
Satd. Flow (prot)	1789	1601	1789	1883	1874	0
Flt Permitted	0.950	1301	0.391	1300	1017	
Satd. Flow (perm)	1767	1535	734	1883	1874	0
Right Turn on Red	1101	Yes	707	1000	1017	Yes
Satd. Flow (RTOR)		322			2	163
Link Speed (k/h)	60	322		60	60	
Link Distance (m)	91.5			47.3	45.7	
Travel Time (s)	5.5			2.8	2.7	
Confl. Peds. (#/hr)	5.5	5	5	2.0	2.1	5
Confl. Bikes (#/hr)	J	5	J			5
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	33	322	111	255	490	14
Shared Lane Traffic (%)	- 33	JZZ	111	200	+30	14
Lane Group Flow (vph)	33	322	111	255	504	0
Turn Type	Prot	Perm	pm+pt	NA	NA	U
Protected Phases	4	r C IIII	риі+рі 5	2	1NA 6	
Permitted Phases	4	4	2		U	
Detector Phase	4	4	5	2	6	
Switch Phase	4	4	3		U	
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	
Minimum Split (s)	26.0	26.0	12.5	26.0	26.0	
Total Split (s)	26.0	26.0	12.5	74.0	61.5	
	26.0%	26.0%	12.5%	74.0%		
Total Split (%)	20.0%	20.0%		68.0	61.5% 55.5	
Maximum Green (s)			8.0			
Yellow Time (s)	4.0	4.0	3.5	4.0 2.0	4.0 2.0	
All-Red Time (s)	2.0	2.0	1.0			
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0	4.5	6.0	6.0	
Lead/Lag			Lead		Lag	
Lead-Lag Optimize?	2.0	2.0	Yes	2.0	Yes	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None	None	Max	Max	
Walk Time (s)	8.0	8.0		8.0	8.0	
Flash Dont Walk (s)	12.0	12.0		12.0	12.0	
Pedestrian Calls (#/hr)	5	5	00 =	5	5	
Act Effct Green (s)	10.5	10.5	69.7	68.2	58.2	
Actuated g/C Ratio	0.12	0.12	0.77	0.75	0.64	

East Hants Traffic Study 01/17/2024

	٠	•	•	†	↓	4		
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR		
v/c Ratio	0.16	0.70	0.17	0.18	0.42			
Control Delay	37.0	13.0	3.8	4.1	10.7			
Queue Delay	0.0	0.0	0.0	0.0	0.0			
Total Delay	37.0	13.0	3.8	4.1	10.7			
LOS	D	В	Α	Α	В			
Approach Delay	15.2			4.0	10.7			
Approach LOS	В			Α	В			
Queue Length 50th (m)	5.3	0.0	3.1	8.8	38.4			
Queue Length 95th (m)	13.3	22.4	11.3	25.5	81.2			
Internal Link Dist (m)	67.5			23.3	21.7			
Turn Bay Length (m)	15.0		15.0					
Base Capacity (vph)	395	590	657	1415	1203			
Starvation Cap Reductn	0	0	0	0	0			
Spillback Cap Reductn	0	0	0	0	0			
Storage Cap Reductn	0	0	0	0	0			
Reduced v/c Ratio	0.08	0.55	0.17	0.18	0.42			
Intersection Summary								
Area Type:	Other							
Cycle Length: 100								
Actuated Cycle Length: 9	0.7							
Natural Cycle: 65								
Control Type: Semi Act-U	Incoord							
Maximum v/c Ratio: 0.70								
Intersection Signal Delay:					tersection			
Intersection Capacity Utili	zation 53.4%			IC	U Level o	of Service A	١	

Splits and Phases: 4: Tk 2 & Armco South

Analysis Period (min) 15



	٠	•	•	†	↓	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	7		NOL.		<u> </u>	JUIN
Traffic Volume (vph)	31	195	323	496	340	33
Future Volume (vph)	31	195	323	496	340	33
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7
Storage Length (m)	15.0	0.0	15.0	3.1	J.1	0.0
Storage Lanes	15.0	1	13.0			0.0
Taper Length (m)	7.6	l l	7.6			U
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.99	0.96	0.99	1.00	1.00	1.00
Frt	0.99	0.850	0.99		0.988	
Fit Protected	0.950	0.000	0.950		0.300	
		1601		1000	1855	0
Satd. Flow (prot)	1789	1601	1789	1883	1000	0
Fit Permitted	0.950	1505	0.448	4000	1055	^
Satd. Flow (perm)	1767	1535	839	1883	1855	0
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)		212			8	
Link Speed (k/h)	60			60	60	
Link Distance (m)	91.5			47.3	45.7	
Travel Time (s)	5.5			2.8	2.7	
Confl. Peds. (#/hr)	5	5	5			5
Confl. Bikes (#/hr)		5				5
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	34	212	351	539	370	36
Shared Lane Traffic (%)						
Lane Group Flow (vph)	34	212	351	539	406	0
Turn Type	Prot	Perm	pm+pt	NA	NA	
Protected Phases	4		5	2	6	
Permitted Phases		4	2			
Detector Phase	4	4	5	2	6	
Switch Phase						
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	
Minimum Split (s)	26.0	26.0	12.5	26.0	26.0	
Total Split (s)	26.0	26.0	12.5	74.0	61.5	
Total Split (%)	26.0%	26.0%	12.5%	74.0%	61.5%	
Maximum Green (s)	20.0	20.0	8.0	68.0	55.5	
Yellow Time (s)	4.0	4.0	3.5	4.0	4.0	
All-Red Time (s)	2.0	2.0	1.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0	4.5	6.0	6.0	
Lead/Lag	0.0	0.0	Lead	0.0	Lag	
Lead-Lag Optimize?			Yes		Yes	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None	None	Max	Max	
	8.0	8.0	NULLE	8.0	8.0	
Walk Time (s)						
Flash Dont Walk (s)	12.0	12.0		12.0	12.0	
Pedestrian Calls (#/hr)	5	5	00.7	5	5	
Act Effct Green (s)	10.3	10.3	69.7	68.2	55.7	
Actuated g/C Ratio	0.11	0.11	0.77	0.75	0.62	

East Hants Traffic Study 01/17/2024

	•	•	•	†	ļ	✓
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
v/c Ratio	0.17	0.59	0.48	0.38	0.36	
Control Delay	37.3	12.3	6.0	5.3	10.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	37.3	12.3	6.0	5.3	10.1	
LOS	D	В	Α	Α	В	
Approach Delay	15.7			5.6	10.1	
Approach LOS	В			Α	В	
Queue Length 50th (m)	5.4	0.0	11.6	22.4	28.4	
Queue Length 95th (m)	13.6	18.2	34.2	60.0	61.7	
Internal Link Dist (m)	67.5			23.3	21.7	
Turn Bay Length (m)	15.0		15.0			
Base Capacity (vph)	396	505	730	1419	1143	
Starvation Cap Reductn	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.09	0.42	0.48	0.38	0.36	
Intersection Summary						
Area Type:	Other					
Cycle Length: 100						
Actuated Cycle Length: 90	0.5					
Natural Cycle: 65						
Control Type: Semi Act-U	ncoord					
Maximum v/c Ratio: 0.59						
Intersection Signal Delay:					tersection	
Intersection Capacity Utili	zation 59.8%			IC	U Level o	of Service B
Analysis Period (min) 15						

Splits and Phases: 4: Tk 2 & Armco South

	۶	•	4	†	↓	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	<u> </u>	₹	NDL Š		1	JUIN
Traffic Volume (vph)	52	446	154	302	626	23
Future Volume (vph)	52	446	154	302	626	23
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7
Storage Length (m)	15.0	0.0	15.0	3.1	3.1	0.0
Storage Lanes	15.0	1	13.0			0.0
Taper Length (m)	7.6	<u> </u>	7.6			U
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
	0.99	0.96	1.00	1.00	1.00	1.00
Ped Bike Factor	0.99					
Frt	0.050	0.850	0.050		0.995	
Flt Protected	0.950	1004	0.950	4000	4070	^
Satd. Flow (prot)	1789	1601	1789	1883	1872	0
Flt Permitted	0.950		0.234			
Satd. Flow (perm)	1767	1535	441	1883	1872	0
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)		325			3	
Link Speed (k/h)	60			60	60	
Link Distance (m)	91.5			47.3	45.7	
Travel Time (s)	5.5			2.8	2.7	
Confl. Peds. (#/hr)	5	5	5			5
Confl. Bikes (#/hr)		5				5
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	57	485	167	328	680	25
Shared Lane Traffic (%)	- 31	700	107	320	000	20
	57	485	167	328	705	0
Lane Group Flow (vph)						U
Turn Type	Prot	Perm	pm+pt	NA	NA	
Protected Phases	4		5	2	6	
Permitted Phases		4	2			
Detector Phase	4	4	5	2	6	
Switch Phase						
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	
Minimum Split (s)	26.0	26.0	12.5	26.0	26.0	
Total Split (s)	26.0	26.0	12.5	74.0	61.5	
Total Split (%)	26.0%	26.0%	12.5%	74.0%	61.5%	
Maximum Green (s)	20.0	20.0	8.0	68.0	55.5	
Yellow Time (s)	4.0	4.0	3.5	4.0	4.0	
All-Red Time (s)	2.0	2.0	1.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
	6.0	6.0	4.5	6.0	6.0	
Total Lost Time (s)	0.0	0.0		0.0		
Lead/Lag			Lead		Lag	
Lead-Lag Optimize?	0.0		Yes	^ ^	Yes	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None	None	Max	Max	
Walk Time (s)	8.0	8.0		8.0	8.0	
Flash Dont Walk (s)	12.0	12.0		12.0	12.0	
Pedestrian Calls (#/hr)	5	5		5	5	
Act Effct Green (s)	16.3	16.3	69.7	68.2	55.7	
Actuated g/C Ratio	0.17	0.17	0.72	0.71	0.58	

East Hants Traffic Study 01/17/2024

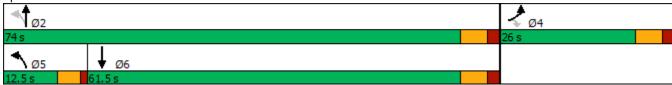
	•	•	•	†	ļ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
v/c Ratio	0.19	0.92	0.39	0.25	0.65	
Control Delay	35.2	36.9	7.4	6.1	18.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	35.2	36.9	7.4	6.1	18.2	
LOS	D	D	Α	Α	В	
Approach Delay	36.7			6.6	18.2	
Approach LOS	D			Α	В	
Queue Length 50th (m)	9.2	30.6	9.5	21.9	91.5	
Queue Length 95th (m)	19.9	#87.0	16.2	33.1	131.7	
Internal Link Dist (m)	67.5			23.3	21.7	
Turn Bay Length (m)	15.0		15.0			
Base Capacity (vph)	371	576	430	1330	1080	
Starvation Cap Reductn	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.15	0.84	0.39	0.25	0.65	
Intersection Summary						
Area Type:	Other					
Cycle Length: 100						

Actuated Cycle Length: 96.5

Natural Cycle: 75

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.92


Intersection Signal Delay: 20.7 Intersection LOS: C
Intersection Capacity Utilization 72.5% ICU Level of Service C

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 4: Tk 2 & Armco South

	٠	•	4	†	ļ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	T T	T T	NDL 1		1	JUIN
Traffic Volume (vph)	52	294	488	662	451	56
Future Volume (vph)	52	294	488	662	451	56
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7
				3.1	3.1	
Storage Length (m)	15.0	0.0	15.0			0.0
Storage Lanes	1	1	1			0
Taper Length (m)	7.6	4.00	7.6	4.00	4.00	4.00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.99	0.96	1.00		1.00	
Frt		0.850			0.985	
Flt Protected	0.950		0.950			
Satd. Flow (prot)	1789	1601	1789	1883	1848	0
Flt Permitted	0.950		0.352			
Satd. Flow (perm)	1767	1535	661	1883	1848	0
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)		320			10	
Link Speed (k/h)	60			60	60	
Link Distance (m)	91.5			47.3	45.7	
Travel Time (s)	5.5			2.8	2.7	
Confl. Peds. (#/hr)	5.5	5	5	2.0	Z.1	5
Confl. Bikes (#/hr)	J	5	J			5
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	57	320	530	720	490	61
Shared Lane Traffic (%)		000	500	700		•
Lane Group Flow (vph)	57	320	530	720	551	0
Turn Type	Prot	Perm	pm+pt	NA	NA	
Protected Phases	4		5	2	6	
Permitted Phases		4	2			
Detector Phase	4	4	5	2	6	
Switch Phase						
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	
Minimum Split (s)	26.0	26.0	12.5	26.0	26.0	
Total Split (s)	26.0	26.0	12.5	74.0	61.5	
Total Split (%)	26.0%	26.0%	12.5%	74.0%	61.5%	
Maximum Green (s)	20.0 %	20.076	8.0	68.0	55.5	
` '						
Yellow Time (s)	4.0	4.0	3.5	4.0	4.0	
All-Red Time (s)	2.0	2.0	1.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0	4.5	6.0	6.0	
Lead/Lag			Lead		Lag	
Lead-Lag Optimize?			Yes		Yes	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None	None	Max	Max	
Walk Time (s)	8.0	8.0		8.0	8.0	
Flash Dont Walk (s)	12.0	12.0		12.0	12.0	
Pedestrian Calls (#/hr)	5	5		5	5	
Act Effct Green (s)	10.5	10.5	69.7	68.2	55.6	
Actuated g/C Ratio	0.12	0.12	0.77	0.75	0.61	
notuated y/O Natio	0.12	0.12	0.77	0.73	0.01	

East Hants Traffic Study 01/17/2024

	•	•	1	†	↓	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
v/c Ratio	0.28	0.70	0.87	0.51	0.48	
Control Delay	39.4	12.9	24.0	6.7	11.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	39.4	12.9	24.0	6.7	11.9	
LOS	D	В	С	Α	В	
Approach Delay	16.9			14.1	11.9	
Approach LOS	В			В	В	
Queue Length 50th (m)	9.2	0.0	20.2	35.1	43.3	
Queue Length 95th (m)	19.9	22.4	#93.0	92.2	91.1	
Internal Link Dist (m)	67.5			23.3	21.7	
Turn Bay Length (m)	15.0		15.0			
Base Capacity (vph)	395	588	607	1415	1137	
Starvation Cap Reductn	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.14	0.54	0.87	0.51	0.48	
Intersection Summary						

Area Type: Other

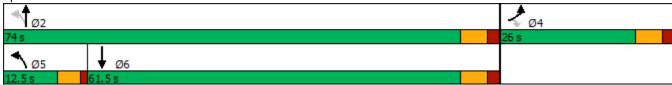
Cycle Length: 100

Actuated Cycle Length: 90.7

Natural Cycle: 90

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.87


Intersection Signal Delay: 14.0 Intersection LOS: B
Intersection Capacity Utilization 76.2% ICU Level of Service D

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 4: Tk 2 & Armco South

Intersection						
Int Delay, s/veh	2.4					
	EDI	EDD	NDI	NDT	CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥		<u></u>	↑	Ą.	
Traffic Vol, veh/h	23	87	24	314	736	11
Future Vol, veh/h	23	87	24	314	736	11
Conflicting Peds, #/hr	5	5	5	0	0	5
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	15	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	_
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	25	95	26	341	800	12
IVIVIII(I IOW	25	33	20	J + 1	000	12
Major/Minor	Minor2	1	Major1	N	//ajor2	
Conflicting Flow All	1209	816	817	0	-	0
Stage 1	811	-	_	-	-	-
Stage 2	398	_	-	_	_	_
Critical Hdwy	6.42	6.22	4.12	_	_	_
Critical Hdwy Stg 1	5.42	-		_	_	_
Critical Hdwy Stg 2	5.42	_	_	_	_	_
Follow-up Hdwy		3.318	2.218			
Pot Cap-1 Maneuver	202	377	811	_	-	_
			011	-	-	-
Stage 1	437	-	-	-	-	-
Stage 2	678	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	194	373	807	-	-	-
Mov Cap-2 Maneuver	194	-	-	-	-	-
Stage 1	421	-	-	-	-	-
Stage 2	675	-	-	-	-	-
Annragah	ED		ND		CD	
Approach	EB		NB		SB	
HCM Control Delay, s	23.4		0.7		0	
HCM LOS	С					
Minor Lane/Major Mvn	nt	NBL	NRT	EBLn1	SBT	SBR
	ι					אמט
Capacity (veh/h)		807	-	0.0	-	-
HCM Lane V/C Ratio		0.032	-	0.382	-	-
HCM Control Delay (s)		9.6	-	23.4	-	-
HCM Lane LOS		Α	-	С	-	-
HCM 95th %tile Q(veh)	0.1	-	1.7	-	-
•						

Intersection						
Int Delay, s/veh	1.6					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	TOL.	LDK	INDL T	IND I		אמט
Traffic Vol, veh/h	T 19	53			Љ 504	30
Future Vol, veh/h	19	53	68 68	800 800	504	30
	5	5	5	000	0	5
Conflicting Peds, #/hr			Free	Free	Free	Free
Sign Control RT Channelized	Stop	Stop None		None		None
	- 0	None -	- 15		-	
Storage Length				-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	21	58	74	870	548	33
Major/Minor N	Minor2		Major1	N	//ajor2	
Conflicting Flow All	1593	575	586	0		0
Stage 1	570	-	-	-	_	-
Stage 2	1023	_	_	_	_	_
Critical Hdwy	6.42	6.22	4.12	_	_	-
Critical Hdwy Stg 1	5.42	-		_	_	_
Critical Hdwy Stg 2	5.42	_	_	_	_	_
		3.318		_	_	_
Pot Cap-1 Maneuver	118	518	989	_	_	_
Stage 1	566	310	303		_	_
Stage 2	347	-	-	-	-	-
	347					
Platoon blocked, %	100	E42	004	-	-	-
Mov Cap-1 Maneuver	108	513	984	-	-	-
Mov Cap-2 Maneuver	108	-	-	-	-	-
Stage 1	521	-	-	-	-	-
Stage 2	345	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	24.9		0.7		0	
HCM LOS	С					
	_					
Minor Long/Mairy M	_	NDI	NDT	EDL 4	CDT	CDD
Minor Lane/Major Mvm	τ	NBL		EBLn1	SBT	SBR
Capacity (veh/h)		984	-	258	-	-
HCM Lane V/C Ratio		0.075	-	0.303	-	-
HCM Control Delay (s)		9	-	24.9	-	-
HCM Lane LOS		Α	-	С	-	-
HCM 95th %tile Q(veh)		0.2	-	1.2	-	-

Intersection						
Int Delay, s/veh	4					
		EDD	NDI	NDT	CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y		<u>ነ</u>	<u>↑</u>	Ą.	
Traffic Vol, veh/h	23	87	24	432	1061	11
Future Vol, veh/h	23	87	24	432	1061	11
Conflicting Peds, #/hr	5	5	5	0	0	5
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	15	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	25	95	26	470	1153	12
N 4 - i /N 4 i	Min		11-1-1		1-1-0	
	Minor2		Major1		//ajor2	
Conflicting Flow All	1691	1169	1170	0	-	0
Stage 1	1164	-	-	-	-	-
Stage 2	527	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy		3.318		-	-	-
Pot Cap-1 Maneuver	103	235	597	-	-	-
Stage 1	297	-	-	-	-	-
Stage 2	592	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	97	233	594	-	-	-
Mov Cap-2 Maneuver	97	-	-	-	-	-
Stage 1	282	_	_	-	_	_
Stage 2	589	_	_	_	_	_
	000					
Annuanah	ED		NID		CD	
Approach	EB		NB		SB	
HCM Control Delay, s			0.6		0	
HCM LOS	F					
Minor Lane/Major Mvr	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		594	-	180	-	
HCM Lane V/C Ratio		0.044		0.664	_	_
HCM Control Delay (s)	11.3	_	57.6	_	_
HCM Lane LOS)					
	.\	B	-	F 3.9	-	-
HCM 95th %tile Q(veh	1)	0.1	-	3.9	-	-

Intersection						
Int Delay, s/veh	2.8					
		EDD	NDI	NDT	CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	**	- 4	<u>ነ</u>	†	4	00
Traffic Vol, veh/h	19	54	68	1131	715	30
Future Vol, veh/h	19	54	68	1131	715	30
Conflicting Peds, #/hr	5	5	5	0	0	5
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	15	-	-	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	21	59	74	1229	777	33
Main =/Min =	A: O		14-1-1		1-1-0	
	/linor2		Major1		//ajor2	
Conflicting Flow All	2181	804	815	0	-	0
Stage 1	799	-	-	-	-	-
Stage 2	1382	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy		3.318	2.218	-	-	-
Pot Cap-1 Maneuver	51	383	812	-	-	-
Stage 1	443	-	-	-	-	-
Stage 2	233	-	-	-	-	-
Platoon blocked, %				_	-	-
Mov Cap-1 Maneuver	46	379	808	-	_	-
Mov Cap-2 Maneuver	46	-	-	_	_	_
Stage 1	400	_	_	_	_	_
Stage 2	232	_	_	_	_	_
Olago Z	202					
Approach	EB		NB		SB	
HCM Control Delay, s	67.7		0.6		0	
HCM LOS	F					
Minor Lane/Major Mvmt	ŀ	NBL	NRT	EBLn1	SBT	SBR
						SDIX
Capacity (veh/h)		808	-		-	-
HCM Cantrol Dalay (a)		0.091		0.606	-	-
HCM Control Delay (s)		9.9	-	v	-	-
HCM Lane LOS		A	-	F	-	-
HCM 95th %tile Q(veh)		0.3	-	3.1	-	-

Intersection						
Int Delay, s/veh	2.2					
		EBB	NDI	NDT	ODT	ODD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y		1	^	f)	
Traffic Vol, veh/h	13	87	31	334	821	4
Future Vol, veh/h	13	87	31	334	821	4
Conflicting Peds, #/hr	5	5	5	0	0	5
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	_	None	-	None	-	None
Storage Length	0	-	15	-	-	-
Veh in Median Storag	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	14	95	34	363	892	4
		- 00	•			
	Minor2		Major1		/lajor2	
Conflicting Flow All	1335	904	901	0	-	0
Stage 1	899	-	-	-	-	-
Stage 2	436	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	169	335	754	-	-	-
Stage 1	397	-	_	_	_	_
Stage 2	652	_	_	_	_	_
Platoon blocked, %	302			_	_	_
Mov Cap-1 Maneuver	160	332	750	_		
Mov Cap-1 Maneuver		-	130		_	
	377		-	-	-	-
Stage 1		-	-	-	-	-
Stage 2	649	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s			0.9		0	
HCM LOS	Z4.0		0.0		- 0	
TIOWI LOG	U					
Minor Lane/Major Mvr	nt	NBL	NBTI	EBLn1	SBT	SBR
Capacity (veh/h)		750	-	291	-	-
HCM Lane V/C Ratio		0.045	-	0.374	_	_
HCM Control Delay (s)	10	_	24.6	_	_
HCM Lane LOS	,	В	_	C	_	_
HCM 95th %tile Q(veh	1)	0.1	_	1.7	_	_
HOW JOHN JOHNE Q(VEI	1)	0.1		1.7	_	_

Intersection						
Int Delay, s/veh	1.7					
•						
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥				₽	
Traffic Vol, veh/h	11	56	113	877	584	7
Future Vol, veh/h	11	56	113	877	584	7
Conflicting Peds, #/hr	5	5	5	0	0	5
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	15	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	12	61	123	953	635	8
Maile =/N4in 4	N 4: C		11-1-1		A-:- C	
	Minor2		Major1		/lajor2	
Conflicting Flow All	1848	649	648	0	-	0
Stage 1	644	-	-	-	-	-
Stage 2	1204	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318		-	-	-
Pot Cap-1 Maneuver	82	470	938	-	-	-
Stage 1	523	-	-	-	-	-
Stage 2	284	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	70	465	933	-	-	-
Mov Cap-2 Maneuver	70	-	-	-	-	-
Stage 1	452	_	-	-	-	-
Stage 2	283	_	_	_	_	-
Jugo 2	_00					
Approach	EB		NB		SB	
HCM Control Delay, s	26.3		1.1		0	
HCM LOS	D					
Minor Lane/Major Mvm	nt	NBL	NDT	EBLn1	SBT	SBR
	ц					אמט
Capacity (veh/h)		933	-	241	-	-
HCM Lane V/C Ratio		0.132		0.302	-	-
HCM Control Delay (s)		9.4	-	26.3	-	-
HCM Lane LOS	\	A	-	D	-	-
HCM 95th %tile Q(veh)	0.5	-	1.2	-	-

Intersection						
Int Delay, s/veh	3.5					
		EDD	NDI	NDT	CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y	07		450	4446	4
Traffic Vol, veh/h	13	87	31	452	1146	4
Future Vol, veh/h	13	87	31	452	1146	4
Conflicting Peds, #/hr	5	5	_ 5	_ 0	0	_ 5
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	15	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	14	95	34	491	1246	4
N A - ' /N A'	14: 0 14: 4			4.1.0		
	Minor2		Major1		Major2	
Conflicting Flow All	1817	1258	1255	0	-	0
Stage 1	1253	-	-	-	-	-
Stage 2	564	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	_	-
Pot Cap-1 Maneuver	86	209	554	_	-	_
Stage 1	269		-	_	_	_
Stage 2	569	_	_	_	_	_
Platoon blocked, %	505			_	_	_
	80	207	551	_	_	
Mov Cap-1 Maneuver			001			-
Mov Cap-2 Maneuver	80	-	-	-	-	-
Stage 1	251	-	-	-	-	-
Stage 2	566	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	56.3		0.8		0	
HCM LOS	50.5 F		0.0		U	
I IOWI LOG	Г					
Minor Lane/Major Mvm	nt	NBL	NBTI	EBLn1	SBT	SBR
Capacity (veh/h)		551	-	172	_	_
HCM Lane V/C Ratio		0.061	_	0.632	_	-
HCM Control Delay (s)		12	_	56.3	_	_
HCM Lane LOS		В	_	F	_	_
HCM 95th %tile Q(veh)	0.2	_	3.6	_	_
HOW SOUT TOUTH W(VEH))	0.2	_	5.0	_	_

Intersection						
Int Delay, s/veh	2.7					
		EBB	ND	NET	ODT	ODD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y		<u> </u>	↑	Ą.	_
Traffic Vol, veh/h	11	57	113	1208	796	7
Future Vol, veh/h	11	57	113	1208	796	7
Conflicting Peds, #/hr	5	5	5	0	0	5
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	15	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	12	62	123	1313	865	8
	Minor2		Major1		/lajor2	
Conflicting Flow All	2438	879	878	0	-	0
Stage 1	874	-	-	-	-	-
Stage 2	1564	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	35	347	769	-	-	-
Stage 1	408	-	-	_	-	_
Stage 2	190	_	_	-	-	-
Platoon blocked, %	100			_	_	_
Mov Cap-1 Maneuver	29	343	765	_	_	_
Mov Cap-1 Maneuver		J - J	100			
Stage 1	341		-	-	_	-
		-		_	-	_
Stage 2	189	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s			0.9		0	
HCM LOS	F		3.5			
Minor Lane/Major Mvr	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		765	-	125	-	-
HCM Lane V/C Ratio		0.161	-	0.591	-	-
HCM Control Delay (s)	10.6	_	68.8	_	-
HCM Lane LOS	,	В	_	F	_	-
HCM 95th %tile Q(veh	1)	0.6	_	3	_	_
TOW JOHN JUNIO Q(VOI	'/	0.0		J		

	۶	→	•	•	+	•	•	†	~	/		
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ች	1		*	1 >	
Traffic Volume (vph)	12	1	62	91	1	10	23	376	33	36	899	5
Future Volume (vph)	12	1	62	91	1	10	23	376	33	36	899	5
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Storage Length (m)	0.0		0.0	0.0		0.0	15.0		0.0	15.0		0.0
Storage Lanes	0		0	0		0	1		0	1		0
Taper Length (m)	7.6			7.6			7.6			7.6		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.97			0.99			1.00		0.99	1.00	
Frt		0.888			0.987			0.988			0.999	
Flt Protected		0.992			0.957		0.950			0.950		
Satd. Flow (prot)	0	1605	0	0	1772	0	1789	1856	0	1789	1881	0
Flt Permitted		0.943			0.785		0.204			0.493		
Satd. Flow (perm)	0	1523	0	0	1440	0	384	1856	0	923	1881	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		67			6			10			1	
Link Speed (k/h)		60			60			60			60	
Link Distance (m)		95.3			67.3			62.4			54.9	
Travel Time (s)		5.7			4.0			3.7			3.3	
Confl. Peds. (#/hr)	5		5	5		5	5		5	5		5
Confl. Bikes (#/hr)			5			5			5			5
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	13	1	67	99	1	11	25	409	36	39	977	5
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	81	0	0	111	0	25	445	0	39	982	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	8.0	8.0		8.0	8.0		8.0	8.0		8.0	8.0	
Minimum Split (s)	26.0	26.0		26.0	26.0		26.0	26.0		26.0	26.0	
Total Split (s)	26.0	26.0		26.0	26.0		66.0	66.0		66.0	66.0	
Total Split (%)	28.3%	28.3%		28.3%	28.3%		71.7%	71.7%		71.7%	71.7%	
Maximum Green (s)	20.0	20.0		20.0	20.0		60.0	60.0		60.0	60.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)		0.0			0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		6.0			6.0		6.0	6.0		6.0	6.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		Max	Max		Max	Max	
Walk Time (s)	8.0	8.0		8.0	8.0		8.0	8.0		8.0	8.0	
Flash Dont Walk (s)	12.0	12.0		12.0	12.0		12.0	12.0		12.0	12.0	
Pedestrian Calls (#/hr)	5	5		5	5		5	5		5	5	
Act Effct Green (s)		12.5			12.5		65.3	65.3		65.3	65.3	
Actuated g/C Ratio		0.15			0.15		0.76	0.76		0.76	0.76	

	•	-	•	•	←	•	1	†	/	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
v/c Ratio		0.29			0.52		0.09	0.31		0.06	0.68	
Control Delay		13.6			40.1		5.8	5.5		4.9	11.1	
Queue Delay		0.0			0.0		0.0	0.0		0.0	0.0	
Total Delay		13.6			40.1		5.8	5.5		4.9	11.1	
LOS		В			D		Α	Α		Α	В	
Approach Delay		13.6			40.1			5.5			10.9	
Approach LOS		В			D			Α			В	
Queue Length 50th (m)		2.0			15.8		1.0	21.2		1.5	76.4	
Queue Length 95th (m)		13.3			30.8		4.5	47.2		5.7	171.3	
Internal Link Dist (m)		71.3			43.3			38.4			30.9	
Turn Bay Length (m)							15.0			15.0		
Base Capacity (vph)		407			341		292	1417		703	1435	
Starvation Cap Reductn		0			0		0	0		0	0	
Spillback Cap Reductn		0			0		0	0		0	0	
Storage Cap Reductn		0			0		0	0		0	0	
Reduced v/c Ratio		0.20			0.33		0.09	0.31		0.06	0.68	

Area Type: Other

Cycle Length: 92

Actuated Cycle Length: 85.6

Natural Cycle: 75

Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.68

Intersection Signal Delay: 11.4 Intersection LOS: B
Intersection Capacity Utilization 70.7% ICU Level of Service C

Analysis Period (min) 15

Splits and Phases: 7: Tk 2 & Logan/Rte 277

	۶	→	*	•	+	4	•	†	~	/		✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ሻ	1		*	1	
Traffic Volume (vph)	5	1	43	62	1	43	76	944	104	34	606	10
Future Volume (vph)	5	1	43	62	1	43	76	944	104	34	606	10
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Storage Length (m)	0.0	0.7	0.0	0.0	0.1	0.0	15.0	0.,	0.0	15.0	0.1	0.0
Storage Lanes	0		0	0		0	1		0	1		0
Taper Length (m)	7.6			7.6			7.6			7.6		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.96			0.98		1.00	1.00			1.00	
Frt		0.880			0.945		1.00	0.985			0.998	
Flt Protected		0.995			0.972		0.950	0.000		0.950	0.000	
Satd. Flow (prot)	0	1591	0	0	1702	0	1789	1849	0	1789	1879	0
Flt Permitted		0.970			0.790		0.365	1010		0.134	1070	
Satd. Flow (perm)	0	1550	0	0	1375	0	685	1849	0	252	1879	0
Right Turn on Red		1000	Yes		1070	Yes	000	10-13	Yes	202	1073	Yes
Satd. Flow (RTOR)		47	103		35	103		12	103		2	103
Link Speed (k/h)		60			60			60			60	
Link Distance (m)		95.3			67.3			62.4			54.9	
Travel Time (s)		5.7			4.0			3.7			3.3	
Confl. Peds. (#/hr)	5	5.1	5	5	4.0	5	5	0.1	5	5	0.0	5
Confl. Bikes (#/hr)	J		5	J		5	<u> </u>		5	J		5
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	5	1	47	67	1	47	83	1026	113	37	659	11
Shared Lane Traffic (%)	<u> </u>		71	01		71	00	1020	110	01	000	
Lane Group Flow (vph)	0	53	0	0	115	0	83	1139	0	37	670	0
Turn Type	Perm	NA	U	Perm	NA	U	Perm	NA	U	Perm	NA	U
Protected Phases	1 01111	4		1 01111	8		1 01111	2		T CITII	6	
Permitted Phases	4			8	U		2			6	U	
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase	7			U	U					U	U	
Minimum Initial (s)	8.0	8.0		8.0	8.0		8.0	8.0		8.0	8.0	
Minimum Split (s)	26.0	26.0		26.0	26.0		26.0	26.0		26.0	26.0	
Total Split (s)	26.0	26.0		26.0	26.0		66.0	66.0		66.0	66.0	
Total Split (%)	28.3%	28.3%		28.3%	28.3%		71.7%	71.7%		71.7%	71.7%	
Maximum Green (s)	20.0	20.0		20.0	20.0		60.0	60.0		60.0	60.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	2.0	0.0		2.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		6.0			6.0		6.0	6.0		6.0	6.0	
Lead/Lag		0.0			0.0		0.0	0.0		0.0	0.0	
Lead-Lag Optimize?												
	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Vehicle Extension (s)												
Recall Mode	None	None		None	None		Max	Max		Max	Max	
Walk Time (s)	8.0	8.0		8.0	8.0		8.0	8.0		8.0	8.0	
Flash Dont Walk (s)	12.0	12.0		12.0	12.0		12.0	12.0		12.0	12.0	
Pedestrian Calls (#/hr)	5	5		5	5		5	5		5	5	
Act Effct Green (s)		11.7			11.7		65.9	65.9		65.9	65.9	
Actuated g/C Ratio		0.14			0.14		0.77	0.77		0.77	0.77	

	•	-	•	•	•	•	1	Ť		-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
v/c Ratio		0.21			0.53		0.16	0.80		0.19	0.46	
Control Delay		13.2			32.7		5.6	15.0		8.1	6.7	
Queue Delay		0.0			0.0		0.0	0.0		0.0	0.0	
Total Delay		13.2			32.7		5.6	15.0		8.1	6.7	
LOS		В			С		Α	В		Α	Α	
Approach Delay		13.2			32.7			14.4			6.7	
Approach LOS		В			С			В			Α	
Queue Length 50th (m)		8.0			11.8		3.2	100.3		1.5	35.5	
Queue Length 95th (m)		9.9			27.0		11.4	#272.4		7.7	83.7	
Internal Link Dist (m)		71.3			43.3			38.4			30.9	
Turn Bay Length (m)							15.0			15.0		
Base Capacity (vph)		399			349		528	1430		194	1451	
Starvation Cap Reductn		0			0		0	0		0	0	
Spillback Cap Reductn		0			0		0	0		0	0	
Storage Cap Reductn		0			0		0	0		0	0	
Reduced v/c Ratio		0.13			0.33		0.16	0.80		0.19	0.46	

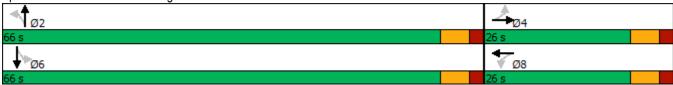
Area Type: Other

Cycle Length: 92

Actuated Cycle Length: 85.4

Natural Cycle: 90

Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.80


Intersection Signal Delay: 12.8 Intersection LOS: B
Intersection Capacity Utilization 86.7% ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 7: Tk 2 & Logan/Rte 277

	•	→	•	•	+	4	•	<u>†</u>	<u> </u>	/	 	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ች	†	7	*	4	
Traffic Volume (vph)	12	1	62	100	1	15	23	492	36	51	1210	5
Future Volume (vph)	12	1	62	100	1	15	23	492	36	51	1210	5
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Storage Length (m)	0.0	•	0.0	0.0		0.0	15.0		0.0	15.0		0.0
Storage Lanes	0		0	0		0	1		1	1		0
Taper Length (m)	7.6			7.6			7.6		•	7.6		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.96			0.98				0.96	0.99	1.00	
Frt		0.888			0.983				0.850		0.999	
Flt Protected		0.992			0.959		0.950			0.950		
Satd. Flow (prot)	0	1599	0	0	1766	0	1789	1883	1601	1789	1881	0
FIt Permitted		0.947			0.729		0.049			0.435		-
Satd. Flow (perm)	0	1524	0	0	1329	0	92	1883	1543	815	1881	0
Right Turn on Red			Yes			Yes			Yes	<u> </u>		Yes
Satd. Flow (RTOR)		67			6				39			
Link Speed (k/h)		60			60			60			60	
Link Distance (m)		95.3			67.3			62.4			54.9	
Travel Time (s)		5.7			4.0			3.7			3.3	
Confl. Peds. (#/hr)	5	0.1	5	5	1.0	5	5	0.1	5	5	0.0	5
Confl. Bikes (#/hr)			5			5			5			5
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	13	1	67	109	1	16	25	535	39	55	1315	5
Shared Lane Traffic (%)	10	•	O,	100	•	10		000			1010	J
Lane Group Flow (vph)	0	81	0	0	126	0	25	535	39	55	1320	0
Turn Type	Perm	NA	•	Perm	NA		Perm	NA	Perm	Perm	NA	•
Protected Phases		4			8			2			6	
Permitted Phases	4	•		8			2	-	2	6	•	
Detector Phase	4	4		8	8		2	2	2	6	6	
Switch Phase	•	•					_	-	_		•	
Minimum Initial (s)	8.0	8.0		8.0	8.0		8.0	8.0	8.0	8.0	8.0	
Minimum Split (s)	26.0	26.0		26.0	26.0		26.0	26.0	26.0	26.0	26.0	
Total Split (s)	26.0	26.0		26.0	26.0		84.0	84.0	84.0	84.0	84.0	
Total Split (%)	23.6%	23.6%		23.6%	23.6%		76.4%	76.4%	76.4%	76.4%	76.4%	
Maximum Green (s)	20.0	20.0		20.0	20.0		78.0	78.0	78.0	78.0	78.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	2.0	0.0		2.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		6.0			6.0		6.0	6.0	6.0	6.0	6.0	
Lead/Lag		0.0			0.0		0.0	0.0	0.0	0.0	0.0	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None		None	None		Max	Max	Max	Max	Max	
Walk Time (s)	8.0	8.0		8.0	8.0		8.0	8.0	8.0	8.0	8.0	
Flash Dont Walk (s)	12.0	12.0		12.0	12.0		12.0	12.0	12.0	12.0	12.0	
Pedestrian Calls (#/hr)	5	5		5	5		5	5	5	5	5	
Act Effct Green (s)	J	14.6		J	14.6		81.2	81.2	81.2	81.2	81.2	
Actuated g/C Ratio		0.14			0.14		0.75	0.75	0.75	0.75	0.75	
Actuated 9/C Ratio		U. 14			U.14		0.75	0.75	0.75	0.75	0.70	

	•	-	•	•	•	•	^	†	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
v/c Ratio		0.31			0.68		0.36	0.38	0.03	0.09	0.93	
Control Delay		15.9			59.8		23.9	6.0	1.5	4.8	26.0	
Queue Delay		0.0			0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay		15.9			59.8		23.9	6.0	1.5	4.8	26.0	
LOS		В			Е		С	Α	Α	Α	С	
Approach Delay		15.9			59.8			6.4			25.2	
Approach LOS		В			Е			Α			С	
Queue Length 50th (m)		2.5			23.4		1.5	32.7	0.0	2.6	193.8	
Queue Length 95th (m)		15.4			42.7		12.2	58.3	2.8	7.2	#371.3	
Internal Link Dist (m)		71.3			43.3			38.4			30.9	
Turn Bay Length (m)							15.0			15.0		
Base Capacity (vph)		337			251		69	1418	1171	613	1416	
Starvation Cap Reductn		0			0		0	0	0	0	0	
Spillback Cap Reductn		0			0		0	0	0	0	0	
Storage Cap Reductn		0			0		0	0	0	0	0	
Reduced v/c Ratio		0.24			0.50		0.36	0.38	0.03	0.09	0.93	

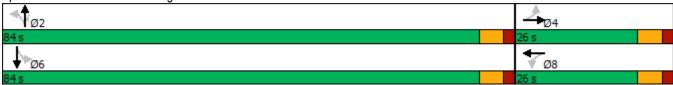
Area Type: Other

Cycle Length: 110

Actuated Cycle Length: 107.8

Natural Cycle: 100

Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.93


Intersection Signal Delay: 21.7 Intersection LOS: C
Intersection Capacity Utilization 87.8% ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 7: Tk 2 & Logan/Rte 277

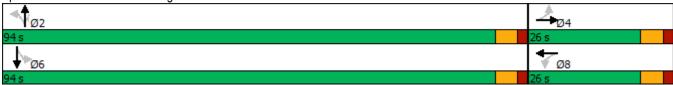
	•	→	•	•	+	4	•	<u></u>	<u> </u>	/	 	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4				7	*	1	
Traffic Volume (vph)	5	1	45	68	1	58	77	1261	114	44	810	10
Future Volume (vph)	5	1	45	68	1	58	77	1261	114	44	810	10
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (m)	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
Storage Length (m)	0.0	0.1	0.0	0.0	0.1	0.0	15.0	0.7	0.0	15.0	0.1	0.0
Storage Lanes	0		0	0		0	1		1	1		0
Taper Length (m)	7.6			7.6			7.6		•	7.6		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.96			0.97				0.96		1.00	
Frt		0.880			0.938				0.850		0.998	
Flt Protected		0.995			0.974		0.950			0.950		
Satd. Flow (prot)	0	1582	0	0	1685	0	1789	1883	1601	1789	1879	0
Flt Permitted		0.972	-		0.839		0.262			0.044		
Satd. Flow (perm)	0	1544	0	0	1441	0	493	1883	1541	83	1879	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		49			30				112		1	
Link Speed (k/h)		60			60			60			60	
Link Distance (m)		95.3			67.3			62.4			54.9	
Travel Time (s)		5.7			4.0			3.7			3.3	
Confl. Peds. (#/hr)	5	0.1	5	5	1.0	5	5	0.1	5	5	0.0	5
Confl. Bikes (#/hr)			5			5			5			5
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	5	1	49	74	1	63	84	1371	124	48	880	11
Shared Lane Traffic (%)		•	10		•		O I			10	000	• •
Lane Group Flow (vph)	0	55	0	0	138	0	84	1371	124	48	891	0
Turn Type	Perm	NA	•	Perm	NA	•	Perm	NA	Perm	Perm	NA	•
Protected Phases		4			8			2			6	
Permitted Phases	4	•		8			2	-	2	6	•	
Detector Phase	4	4		8	8		2	2	2	6	6	
Switch Phase	•	•					_	-	_		•	
Minimum Initial (s)	8.0	8.0		8.0	8.0		8.0	8.0	8.0	8.0	8.0	
Minimum Split (s)	26.0	26.0		26.0	26.0		26.0	26.0	26.0	26.0	26.0	
Total Split (s)	26.0	26.0		26.0	26.0		94.0	94.0	94.0	94.0	94.0	
Total Split (%)	21.7%	21.7%		21.7%	21.7%		78.3%	78.3%	78.3%	78.3%	78.3%	
Maximum Green (s)	20.0	20.0		20.0	20.0		88.0	88.0	88.0	88.0	88.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	2.0	0.0		2.0	0.0		0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		6.0			6.0		6.0	6.0	6.0	6.0	6.0	
Lead/Lag		0.0			0.0		0.0	0.0	0.0	0.0	0.0	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None		None	None		Max	Max	Max	Max	Max	
Walk Time (s)	8.0	8.0		8.0	8.0		8.0	8.0	8.0	8.0	8.0	
Flash Dont Walk (s)	12.0	12.0		12.0	12.0		12.0	12.0	12.0	12.0	12.0	
Pedestrian Calls (#/hr)	5	5		5	5		5	5	5	5	5	
Act Effct Green (s)	J	14.1		J	14.1		90.9	90.9	90.9	90.9	90.9	
Actuated g/C Ratio		0.12			0.12		0.78	0.78	0.78	0.78	0.78	
Actuated 9/C Ratio		U.IZ			U.IZ		0.70	0.70	0.70	0.70	0.70	

	•	-	•	•	←	*	1	†	_	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
v/c Ratio		0.24			0.69		0.22	0.94	0.10	0.75	0.61	
Control Delay		17.0			55.3		5.9	26.0	1.1	76.3	8.4	
Queue Delay		0.0			0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay		17.0			55.3		5.9	26.0	1.1	76.3	8.4	
LOS		В			Е		Α	С	Α	Е	Α	
Approach Delay		17.0			55.3			22.9			11.9	
Approach LOS		В			Е			С			В	
Queue Length 50th (m)		1.2			23.3		4.3	214.6	0.5	4.8	72.1	
Queue Length 95th (m)		12.6			44.0		11.8	#413.8	5.3	#19.2	129.0	
Internal Link Dist (m)		71.3			43.3			38.4			30.9	
Turn Bay Length (m)							15.0			15.0		
Base Capacity (vph)		305			271		382	1462	1221	64	1459	
Starvation Cap Reductn		0			0		0	0	0	0	0	
Spillback Cap Reductn		0			0		0	0	0	0	0	
Storage Cap Reductn		0			0		0	0	0	0	0	
Reduced v/c Ratio		0.18			0.51		0.22	0.94	0.10	0.75	0.61	

Area Type: Other

Cycle Length: 120 Actuated Cycle Length: 117 Natural Cycle: 110

Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.94


Intersection Signal Delay: 20.6 Intersection LOS: C
Intersection Capacity Utilization 91.0% ICU Level of Service F

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 7: Tk 2 & Logan/Rte 277

Intersection						
Int Delay, s/veh	0.3					
		MDD	NET	NDD	ODI	ODT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	<u> ነ</u>		- î∍			ની
Traffic Vol, veh/h	9	1	409	8	2	
Future Vol, veh/h	9	1	409	8	2	1062
Conflicting Peds, #/hr	5	5	0	5	5	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	10	1	445	9	2	
maille IVII	10		170			1107
	Minor1		//ajor1		Major2	
Conflicting Flow All	1618	460	0	0	459	0
Stage 1	455	-	-	-	-	-
Stage 2	1163	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	_
Critical Hdwy Stg 2	5.42	_	-	_	_	-
Follow-up Hdwy	3.518	3.318	_	_	2.218	<u>-</u>
Pot Cap-1 Maneuver	114	601	_	-	1102	_
Stage 1	639	-	_	_	1102	_
Stage 2	297	_	-	-	-	-
	291		-	_	-	-
Platoon blocked, %	140	F0F	-	-	1000	-
Mov Cap-1 Maneuver	112	595	-	-	1096	-
Mov Cap-2 Maneuver	112	-	-	-	-	-
Stage 1	636	-	-	-	-	-
Stage 2	294	-	-	-	-	-
Approach	WB		NB		SB	
	37.4					
HCM Control Delay, s	3/4		0		0	
110141.00						
HCM LOS	E					
HCM LOS						
	E	NRT	NRRV	VRI n1	SRI	SRT
Minor Lane/Major Mvm	E	NBT		VBLn1	SBL	SBT
Minor Lane/Major Mvm Capacity (veh/h)	E	-	-	122	1096	-
Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	E it	NBT - -	-	122 0.089	1096 0.002	-
Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	E it	-	-	122 0.089 37.4	1096 0.002 8.3	- - 0
Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	E nt	-	-	122 0.089	1096 0.002	-

-						
Intersection						
Int Delay, s/veh	0.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	YVDL	אטוו		NDN	ODL	
	1 0	0	1115	19	1	€ 1
Traffic Vol, veh/h		8	1115			701
Future Vol, veh/h	10	8	1115	19	1	701
Conflicting Peds, #/hr	5	5	0	5	5	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	11	9	1212	21	1	762
Major/Minor	Minari		laiar1		Majora	
	Minor1		Major1		Major2	
Conflicting Flow All	1997	1233	0	0	1238	0
Stage 1	1228	-	-	-	-	-
Stage 2	769	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	66	216	-	-	563	-
Stage 1	277		_	_	-	_
Stage 2	457	_	_	_	_	_
Platoon blocked, %	701			_		_
Mov Cap-1 Maneuver	65	214	-	_	560	
	65					
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	276	-	-	-	-	-
Stage 2	453	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	53.1		0		0	
HCM LOS	55.1 F		U		U	
I IOIVI LOS	Г					
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	94	560	-
HCM Lane V/C Ratio		_	_	0.208		_
HCM Control Delay (s)				53.1	11.4	0
HCM Lane LOS		<u>-</u>		55.1	В	A
	\	_	-	0.7		
HCM 95th %tile Q(veh)	-	-	0.7	0	-

Intersection						
Int Delay, s/veh	0.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	VVDL	WDIX		ווטוז	ODL	
Traffic Vol, veh/h	10	1	↑ ↑	9	2	4 ↑ 1382
Future Vol, veh/h	10	•	529		2	
		1		9		1382
Conflicting Peds, #/hr	5 Ctan	5 Ctan	0	5	5	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	11	1	575	10	2	1502
Major/Minor	Minor1	N	/lajor1		Major2	
						^
Conflicting Flow All	1345	303	0	0	590	0
Stage 1	585	-	-	-	-	-
Stage 2	760	-	-	-	-	-
Critical Hdwy	6.84	6.94	-	-	4.14	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	-	-	2.22	-
Pot Cap-1 Maneuver	143	693	-	-	982	-
Stage 1	520	-	-	-	-	-
Stage 2	422	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	140	686	-	-	977	-
Mov Cap-2 Maneuver		-	-	-	_	_
Stage 1	517	_	-	_	_	-
Stage 2	415	_	_	_	_	_
Olugo Z	710					
Approach	WB		NB		SB	
HCM Control Delay, s	30.9		0		0.1	
HCM LOS	D					
NA:	. 1	NET	NDD	VDI 4	051	OPT
Minor Lane/Major Mvr	nt	NBT	NRKA	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	151	977	-
HCM Lane V/C Ratio		-	-	0.079		-
HCM Control Delay (s)	-	-	30.9	8.7	0.1
HCM Lane LOS				D	Α	Α
HCM 95th %tile Q(veh	1)	-	-	0.3	0	-

Intersection						
Int Delay, s/veh	0.6					
•		14/5-5	NIE -		0.71	05-
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ሻ		↑ ⊅			41
Traffic Vol, veh/h	11	8	1443	20	1	913
Future Vol, veh/h	11	8	1443	20	1	913
Conflicting Peds, #/hr	5	5	0	5	5	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	12	9	1568	22	1	992
		-		_		
	Minor1		//ajor1		Major2	
Conflicting Flow All	2087	805	0	0	1595	0
Stage 1	1584	-	-	-	-	-
Stage 2	503	-	-	-	-	-
Critical Hdwy	6.84	6.94	-	-	4.14	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	-	-	2.22	-
Pot Cap-1 Maneuver	45	325	-	_	407	-
Stage 1	154	-	-	-	-	-
Stage 2	573	-	-	-	_	-
Platoon blocked, %	3, 3		_	_		_
Mov Cap-1 Maneuver	44	322	_	_	405	_
Mov Cap-1 Maneuver	44	-	_	_	-	_
Stage 1	153		-	_	_	<u>-</u>
	567		_	-		-
Stage 2	700	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	78.1		0		0	
HCM LOS	F					
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	69	405	-
HCM Lane V/C Ratio		-	-	0.299	0.003	-
HCM Control Delay (s)		-	-	78.1	13.9	0
HCM Lane LOS		-	-	F	В	Α
HCM 95th %tile Q(veh)	-	-	1.1	0	-
	,				_	

	۶	→	•	<	←	•	•	†	/	\	↓	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	7		4		ሻ	f)		ሻ	f a	
Traffic Volume (vph)	69	90	195	78	211	42	263	148	53	33	207	193
Future Volume (vph)	69	90	195	78	211	42	263	148	53	33	207	193
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0	1000	40.0	0.0	1000	0.0	30.0	1000	15.0	25.0	1000	15.0
Storage Lanes	0.0		1	0.0		0.0	1		0	1		0.0
Taper Length (m)	20.0		•	20.0		· ·	20.0		•	20.0		v
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	1.00	0.96	1.00	0.99	1.00	1.00	0.99	1.00	0.99	0.98	1.00
Frt		1.00	0.850		0.983		1.00	0.960		0.00	0.928	
Flt Protected		0.979	0.000		0.988		0.950	0.500		0.950	0.520	
Satd. Flow (prot)	0	1844	1601	0	1821	0	1789	1792	0	1789	1719	0
Flt Permitted	U	0.694	1001	U	0.870	U	0.450	1132	U	0.621	17 13	U
Satd. Flow (perm)	0	1304	1543	0	1601	0	844	1792	0	1161	1719	0
Right Turn on Red	U	1304	Yes	U	1001	Yes	044	1132	Yes	1101	17 13	Yes
Satd. Flow (RTOR)			212		9	163		34	163		87	163
		60	212		60			60			60	
Link Speed (k/h)		113.7			102.5			78.7			91.3	
Link Distance (m)					6.2							
Travel Time (s)	_	6.8	_	_	0.2	_	_	4.7	_	_	5.5	_
Confl. Peds. (#/hr)	5		5	5		5	5		5	5		5
Confl. Bikes (#/hr)	0.00	0.00	5	0.00	0.00	5	0.00	0.00	5	0.00	0.00	5
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	75	98	212	85	229	46	286	161	58	36	225	210
Shared Lane Traffic (%)		4-0						2.12				
Lane Group Flow (vph)	0	173	212	0	360	0	286	219	0	36	435	0
Turn Type	Perm	NA	Perm	Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4		4	8			2			6	_	
Detector Phase	4	4	4	8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0		8.0	8.0		8.0	8.0	
Minimum Split (s)	26.9	26.9	26.9	22.1	22.1		30.5	30.5		30.5	30.5	
Total Split (s)	32.0	32.0	32.0	32.0	32.0		52.0	52.0		52.0	52.0	
Total Split (%)	38.1%	38.1%	38.1%	38.1%	38.1%		61.9%	61.9%		61.9%	61.9%	
Maximum Green (s)	26.1	26.1	26.1	26.1	26.1		45.5	45.5		45.5	45.5	
Yellow Time (s)	4.1	4.1	4.1	4.1	4.1		5.0	5.0		5.0	5.0	
All-Red Time (s)	1.8	1.8	1.8	1.8	1.8		1.5	1.5		1.5	1.5	
Lost Time Adjust (s)		0.0	0.0		0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		5.9	5.9		5.9		6.5	6.5		6.5	6.5	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None	None	None	None		Min	Min		Min	Min	
Walk Time (s)	8.0	8.0	8.0				8.0	8.0		8.0	8.0	
Flash Dont Walk (s)	12.0	12.0	12.0				12.0	12.0		12.0	12.0	
Pedestrian Calls (#/hr)	5	5	5				5	5		5	5	
Act Effct Green (s)		18.6	18.6		18.6		28.4	28.4		28.4	28.4	
Actuated g/C Ratio		0.31	0.31		0.31		0.47	0.47		0.47	0.47	
v/c Ratio		0.43	0.34		0.73		0.73	0.26		0.07	0.51	

	•	-	•	•	—	•	•	†	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Control Delay		23.7	5.2		30.4		25.3	9.0		9.4	11.1	
Queue Delay		0.0	0.0		0.0		0.0	0.0		0.0	0.0	
Total Delay		23.7	5.2		30.4		25.3	9.0		9.4	11.1	
LOS		С	Α		С		С	Α		Α	В	
Approach Delay		13.5			30.4			18.2			11.0	
Approach LOS		В			С			В			В	
Queue Length 50th (m)		14.7	0.0		33.2		22.8	10.8		2.0	23.0	
Queue Length 95th (m)		39.8	14.3		#81.1		57.7	25.4		6.8	51.6	
Internal Link Dist (m)		89.7			78.5			54.7			67.3	
Turn Bay Length (m)			40.0				30.0			25.0		
Base Capacity (vph)		623	848		770		651	1391		896	1347	
Starvation Cap Reductn		0	0		0		0	0		0	0	
Spillback Cap Reductn		0	0		0		0	0		0	0	
Storage Cap Reductn		0	0		0		0	0		0	0	
Reduced v/c Ratio		0.28	0.25		0.47		0.44	0.16		0.04	0.32	

Area Type: Other

Cycle Length: 84

Actuated Cycle Length: 60.7

Natural Cycle: 60

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.73

Intersection Signal Delay: 17.7 Intersection LOS: B
Intersection Capacity Utilization 78.0% ICU Level of Service D

Analysis Period (min) 15

Queue shown is maximum after two cycles.

Splits and Phases: 13: Tk 2 & Rte 214

^{# 95}th percentile volume exceeds capacity, queue may be longer.

	۶	→	•	•	←	4	•	†	/	\	↓	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4	7		4		ሻ	f.		*	f	
Traffic Volume (vph)	189	227	435	68	159	53	361	262	113	51	215	154
Future Volume (vph)	189	227	435	68	159	53	361	262	113	51	215	154
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0	1000	40.0	0.0	1000	0.0	30.0	1000	15.0	25.0	1000	15.0
Storage Lanes	0.0		1	0.0		0.0	1		0	1		0.0
Taper Length (m)	20.0		•	20.0		· ·	20.0		•	20.0		v
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	1.00	0.96	1.00	0.99	1.00	0.99	0.99	1.00	0.99	0.98	1.00
Frt		1.00	0.850		0.974		0.00	0.955		0.00	0.938	
Flt Protected		0.978	0.000		0.988		0.950	0.555		0.950	0.550	
Satd. Flow (prot)	0	1842	1601	0	1802	0	1789	1778	0	1789	1739	0
Flt Permitted	U	0.665	1001	U	0.576	U	0.438	1770	U	0.432	1700	U
Satd. Flow (perm)	0	1249	1540	0	1049	0	820	1778	0	809	1739	0
Right Turn on Red	U	1243	Yes	U	1043	Yes	020	1770	Yes	003	1700	Yes
Satd. Flow (RTOR)			362		13	163		27	163		45	163
Link Speed (k/h)		60	302		60			60			60	
Link Distance (m)		113.7			102.5			78.7			91.3	
Travel Time (s)		6.8			6.2			4.7			5.5	
Confl. Peds. (#/hr)	5	0.0	5	5	0.2	5	5	4.7	5	5	5.5	5
Confl. Bikes (#/hr)	J		5	J		5	J		5	J		5
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	205	247	473	74	173	58	392	285	123	55	234	167
Shared Lane Traffic (%)	203	241	473	/4	173	30	332	200	123	33	234	107
Lane Group Flow (vph)	0	452	473	0	305	0	392	408	0	55	401	0
Turn Type	Perm	NA	Perm	Perm	NA	U	Perm	NA	U	Perm	NA	U
Protected Phases	I GIIII	4	I GIIII	I GIIII	8		i Giiii	2		i Giiii	6	
Permitted Phases	4		4	8			2			6	- U	
Detector Phase	4	4	4	8	8		2	2		6	6	
Switch Phase		7			J							
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0		8.0	8.0		8.0	8.0	
Minimum Split (s)	26.9	26.9	26.9	22.1	22.1		30.5	30.5		30.5	30.5	
Total Split (s)	50.7	50.7	50.7	50.7	50.7		59.3	59.3		59.3	59.3	
Total Split (%)	46.1%	46.1%	46.1%	46.1%	46.1%		53.9%	53.9%		53.9%	53.9%	
Maximum Green (s)	44.8	44.8	44.8	44.8	44.8		52.8	52.8		52.8	52.8	
Yellow Time (s)	4.1	4.1	4.1	4.1	4.1		5.0	5.0		5.0	5.0	
All-Red Time (s)	1.8	1.8	1.8	1.8	1.8		1.5	1.5		1.5	1.5	
Lost Time Adjust (s)		0.0	0.0		0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		5.9	5.9		5.9		6.5	6.5		6.5	6.5	
Lead/Lag			0.0		0.0		0.0	0.0			<u> </u>	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None	None	None	None		Min	Min		Min	Min	
Walk Time (s)	8.0	8.0	8.0		,		8.0	8.0		8.0	8.0	
Flash Dont Walk (s)	12.0	12.0	12.0				12.0	12.0		12.0	12.0	
Pedestrian Calls (#/hr)	5	5	5				5	5		5	5	
Act Effct Green (s)		41.2	41.2		41.2		52.9	52.9		52.9	52.9	
Actuated g/C Ratio		0.39	0.39		0.39		0.50	0.50		0.50	0.50	
v/c Ratio		0.94	0.58		0.74		0.96	0.46		0.14	0.45	

	→ ¬	• •	•	←	•	1	†	~	-	ļ	1
Lane Group	EBL EB	T EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Control Delay	60.	1 9.0		38.7		65.4	19.0		17.1	18.0	
Queue Delay	0.	0.0		0.0		0.0	0.0		0.0	0.0	
Total Delay	60.	1 9.0		38.7		65.4	19.0		17.1	18.0	
LOS		E A		D		Е	В		В	В	
Approach Delay	34.	0		38.7			41.7			17.9	
Approach LOS		0		D			D			В	
Queue Length 50th (m)	88.	5 15.0		51.2		81.2	53.0		6.4	49.3	
Queue Length 95th (m)	#149.	0 43.7		85.3		#144.7	78.7		14.2	74.6	
Internal Link Dist (m)	89.	7		78.5			54.7			67.3	
Turn Bay Length (m)		40.0				30.0			25.0		
Base Capacity (vph)	52	6 858		449		407	896		401	886	
Starvation Cap Reductn		0 0		0		0	0		0	0	
Spillback Cap Reductn		0 0		0		0	0		0	0	
Storage Cap Reductn		0 0		0		0	0		0	0	
Reduced v/c Ratio	0.8	6 0.55		0.68		0.96	0.46		0.14	0.45	

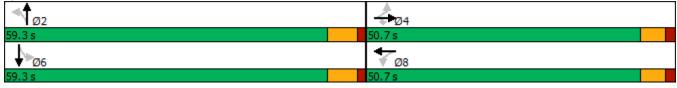
Area Type: Other

Cycle Length: 110

Actuated Cycle Length: 106.6

Natural Cycle: 70

Control Type: Actuated-Uncoordinated


Maximum v/c Ratio: 0.96

Intersection Signal Delay: 34.1 Intersection LOS: C
Intersection Capacity Utilization 99.5% ICU Level of Service F

Analysis Period (min) 15

Queue shown is maximum after two cycles.

Splits and Phases: 13: Tk 2 & Rte 214

^{# 95}th percentile volume exceeds capacity, queue may be longer.

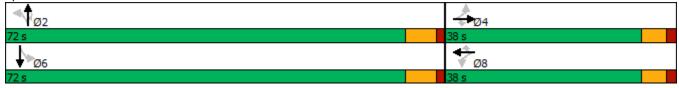
	۶	→	•	•	+	•	•	†	<i>></i>	/	↓	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	†	7	*	1	7	ሻ		7	*	f)	
Traffic Volume (vph)	84	101	197	80	248	37	268	165	54	33	246	241
Future Volume (vph)	84	101	197	80	248	37	268	165	54	33	246	241
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	15.0		40.0	15.0		15.0	30.0		30.0	25.0		15.0
Storage Lanes	1		1	1		1	1		1	1		0
Taper Length (m)	20.0			20.0			20.0			20.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.99		0.96	0.99		0.97	1.00		0.96	0.99	0.98	
Frt			0.850			0.850			0.850		0.926	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1789	1883	1601	1789	1883	1601	1789	1883	1601	1789	1713	0
Flt Permitted	0.520			0.686			0.391			0.644		
Satd. Flow (perm)	972	1883	1537	1277	1883	1545	733	1883	1542	1200	1713	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			214			35			59		79	
Link Speed (k/h)		60			60			60			60	
Link Distance (m)		113.7			102.5			78.7			91.3	
Travel Time (s)		6.8			6.2			4.7			5.5	
Confl. Peds. (#/hr)	5	0.0	5	5	<u> </u>	5	5		5	5	0.0	5
Confl. Bikes (#/hr)	•		5			5			5			5
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	91	110	214	87	270	40	291	179	59	36	267	262
Shared Lane Traffic (%)	<u> </u>			<u> </u>	2.0			1.0				202
Lane Group Flow (vph)	91	110	214	87	270	40	291	179	59	36	529	0
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	
Protected Phases	1 01111	4	. 0	1 01111	8	1 01111	1 01111	2	1 01111	1 01111	6	
Permitted Phases	4	•	4	8		8	2	_	2	6		
Detector Phase	4	4	4	8	8	8	2	2	2	6	6	
Switch Phase		•					_	_	_			
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	
Minimum Split (s)	26.9	26.9	26.9	22.1	22.1	22.1	30.5	30.5	30.5	30.5	30.5	
Total Split (s)	38.0	38.0	38.0	38.0	38.0	38.0	72.0	72.0	72.0	72.0	72.0	
Total Split (%)	34.5%	34.5%	34.5%	34.5%	34.5%	34.5%	65.5%	65.5%	65.5%	65.5%	65.5%	
Maximum Green (s)	32.1	32.1	32.1	32.1	32.1	32.1	65.5	65.5	65.5	65.5	65.5	
Yellow Time (s)	4.1	4.1	4.1	4.1	4.1	4.1	5.0	5.0	5.0	5.0	5.0	
All-Red Time (s)	1.8	1.8	1.8	1.8	1.8	1.8	1.5	1.5	1.5	1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.9	5.9	5.9	5.9	5.9	5.9	6.5	6.5	6.5	6.5	6.5	
Lead/Lag	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None	None	None	None	None	Min	Min	Min	Min	Min	
Walk Time (s)	8.0	8.0	8.0	140110	140110	140110	8.0	8.0	8.0	8.0	8.0	
Flash Dont Walk (s)	12.0	12.0	12.0				12.0	12.0	12.0	12.0	12.0	
Pedestrian Calls (#/hr)	5	5	5				5	5	5	5	5	
Act Effct Green (s)	15.9	15.9	15.9	15.9	15.9	15.9	32.2	32.2	32.2	32.2	32.2	
Actuated g/C Ratio	0.25	0.25	0.25	0.25	0.25	0.25	0.52	0.52	0.52	0.52	0.52	
v/c Ratio	0.23	0.23	0.23	0.23	0.25	0.23	0.32	0.32	0.07	0.06	0.57	
V/O I (GIIO	0.01	0.23	0.00	0.21	0.50	0.10	0.11	0.10	0.01	0.00	0.51	

	•	-	•	•	←	•	•	†	~	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Control Delay	29.0	24.3	6.7	25.9	28.9	11.4	27.0	8.2	2.5	7.6	10.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	29.0	24.3	6.7	25.9	28.9	11.4	27.0	8.2	2.5	7.6	10.9	
LOS	С	С	Α	С	С	В	С	Α	Α	Α	В	
Approach Delay		16.2			26.5			17.9			10.7	
Approach LOS		В			С			В			В	
Queue Length 50th (m)	7.6	8.9	0.0	7.1	24.0	0.4	21.2	8.7	0.0	1.6	27.2	
Queue Length 95th (m)	30.2	32.1	17.3	27.6	73.5	8.8	66.6	23.3	4.6	6.6	68.8	
Internal Link Dist (m)		89.7			78.5			54.7			67.3	
Turn Bay Length (m)	15.0		40.0	15.0		15.0	30.0		30.0	25.0		
Base Capacity (vph)	578	1119	1000	759	1119	932	666	1711	1407	1090	1564	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.16	0.10	0.21	0.11	0.24	0.04	0.44	0.10	0.04	0.03	0.34	

Area Type: Other

Cycle Length: 110
Actuated Cycle Length: 62.4

Natural Cycle: 70


Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.77

Intersection Signal Delay: 17.2 Intersection LOS: B
Intersection Capacity Utilization 83.2% ICU Level of Service E

Analysis Period (min) 15

Splits and Phases: 13: Tk 2 & Rte 214

	۶	→	•	•	←	4	•	†	~	/	↓	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	+	7	ሻ	†	7	*	†	7	ሻ	1	
Traffic Volume (vph)	236	262	442	69	181	51	364	312	115	46	244	185
Future Volume (vph)	236	262	442	69	181	51	364	312	115	46	244	185
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	15.0	1000	40.0	15.0	1000	15.0	30.0	1000	30.0	25.0	1000	15.0
Storage Lanes	1		1	1		1	1		1	1		0.0
Taper Length (m)	20.0		•	20.0		•	20.0		•	20.0		J
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.99	1.00	0.96	0.99	1.00	0.97	0.99	1.00	0.96	0.99	0.98	1.00
Frt	0.55		0.850	0.55		0.850	0.55		0.850	0.55	0.935	
Flt Protected	0.950		0.000	0.950		0.000	0.950		0.000	0.950	0.500	
Satd. Flow (prot)	1789	1883	1601	1789	1883	1601	1789	1883	1601	1789	1733	0
Flt Permitted	0.591	1000	1001	0.459	1000	1001	0.422	1000	1001	0.526	1700	U
Satd. Flow (perm)	1103	1883	1537	858	1883	1545	790	1883	1542	983	1733	0
Right Turn on Red	1100	1000	Yes	000	1000	Yes	130	1000	Yes	300	1700	Yes
Satd. Flow (RTOR)			480			38			125		61	163
Link Speed (k/h)		60	400		60	30		60	125		60	
Link Distance (m)		113.7			102.5			78.7			91.3	
Travel Time (s)		6.8			6.2			4.7			5.5	
Confl. Peds. (#/hr)	5	0.0	5	5	0.2	5	5	4.7	5	5	5.5	5
Confl. Bikes (#/hr)	5		5	3		5	3		5	5		5
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	257	285	480	75	197	55	396	339	125	50	265	201
Shared Lane Traffic (%)	201	200	400	13	131	33	330	333	123	30	200	201
Lane Group Flow (vph)	257	285	480	75	197	55	396	339	125	50	466	0
Turn Type	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	Perm	Perm	NA	J
Protected Phases	i Giiii	4	I GIIII	i Giiii	8	I GIIII	i Giiii	2	I GIIII	i Giiii	6	
Permitted Phases	4		4	8	U	8	2		2	6	- U	
Detector Phase	4	4	4	8	8	8	2	2	2	6	6	
Switch Phase			<u> </u>	<u> </u>								
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	
Minimum Split (s)	26.9	26.9	26.9	22.1	22.1	22.1	30.5	30.5	30.5	30.5	30.5	
Total Split (s)	38.0	38.0	38.0	38.0	38.0	38.0	72.0	72.0	72.0	72.0	72.0	
Total Split (%)	34.5%	34.5%	34.5%	34.5%	34.5%	34.5%	65.5%	65.5%	65.5%	65.5%	65.5%	
Maximum Green (s)	32.1	32.1	32.1	32.1	32.1	32.1	65.5	65.5	65.5	65.5	65.5	
Yellow Time (s)	4.1	4.1	4.1	4.1	4.1	4.1	5.0	5.0	5.0	5.0	5.0	
All-Red Time (s)	1.8	1.8	1.8	1.8	1.8	1.8	1.5	1.5	1.5	1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.9	5.9	5.9	5.9	5.9	5.9	6.5	6.5	6.5	6.5	6.5	
Lead/Lag	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None	None	None	None	None	Min	Min	Min	Min	Min	
Walk Time (s)	8.0	8.0	8.0	140110	140110	110110	8.0	8.0	8.0	8.0	8.0	
Flash Dont Walk (s)	12.0	12.0	12.0				12.0	12.0	12.0	12.0	12.0	
Pedestrian Calls (#/hr)	5	5	5				5	5	5	5	5	
Act Effct Green (s)	27.7	27.7	27.7	27.7	27.7	27.7	50.7	50.7	50.7	50.7	50.7	
Actuated g/C Ratio	0.30	0.30	0.30	0.30	0.30	0.30	0.55	0.55	0.55	0.55	0.55	
v/c Ratio	0.77	0.50	0.60	0.29	0.35	0.11	0.91	0.33	0.14	0.09	0.47	

	•	-	•	•	•	•	4	†	~	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Control Delay	49.8	32.7	6.4	32.4	30.1	13.7	45.6	12.0	2.2	10.2	12.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	49.8	32.7	6.4	32.4	30.1	13.7	45.6	12.0	2.2	10.2	12.2	
LOS	D	С	Α	С	С	В	D	В	Α	В	В	
Approach Delay		24.7			27.8			26.0			12.0	
Approach LOS		С			С			С			В	
Queue Length 50th (m)	45.5	45.7	0.0	11.2	29.9	2.3	64.7	33.6	0.0	4.3	44.0	
Queue Length 95th (m)	#92.3	77.1	24.7	25.4	53.3	12.0	#129.8	49.7	7.0	9.6	66.3	
Internal Link Dist (m)		89.7			78.5			54.7			67.3	
Turn Bay Length (m)	15.0		40.0	15.0		15.0	30.0		30.0	25.0		
Base Capacity (vph)	415	708	878	322	708	605	572	1365	1152	713	1273	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.62	0.40	0.55	0.23	0.28	0.09	0.69	0.25	0.11	0.07	0.37	

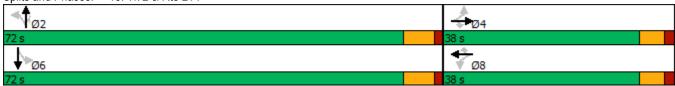
Area Type: Other

Cycle Length: 110
Actuated Cycle Length: 91.7

Natural Cycle: 75

Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.91 Intersection Signal Delay: 23.1 Intersection Capacity Utilization 87.8%


Intersection LOS: C
ICU Level of Service E

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 13: Tk 2 & Rte 214

	ၨ	→	←	•	>	1		
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	Ø8	
Lane Configurations	ች			7	ች	7		
Traffic Volume (vph)	146	346	612	225	100	172		
Future Volume (vph)	146	346	612	225	100	172		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Storage Length (m)	0.0			30.0	0.0	60.0		
Storage Lanes	1			1	1	1		
Taper Length (m)	20.0			•	20.0	•		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Ped Bike Factor				0.97	0.99	0.98		
Frt				0.850	0.00	0.850		
Flt Protected	0.950			0.000	0.950	0.000		
Satd. Flow (prot)	1789	1883	1883	1601	1789	1601		
Flt Permitted	0.168	1000	1000	1001	0.950	1001		
Satd. Flow (perm)	316	1883	1883	1553	1771	1565		
Right Turn on Red	010	1000	1000	Yes	1771	Yes		
Satd. Flow (RTOR)				194		187		
Link Speed (k/h)		60	60	134	60	107		
Link Distance (m)		93.5	93.2		85.4			
Travel Time (s)		5.6	5.6		5.1			
Confl. Peds. (#/hr)	5	5.0	5.0	5	5	5		
Confl. Bikes (#/hr)	J			5	J	5		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	159	376	665	245	109	187		
Shared Lane Traffic (%)	133	370	003	243	103	107		
Lane Group Flow (vph)	159	376	665	245	109	187		
Turn Type	pm+pt	NA	NA	Perm	Prot	Perm		
Protected Phases	ριτι - -ρι	6	2	Feiiii	4	reiiii	8	
Permitted Phases	6	U		2	4	4	O	
Detector Phase	1	6	2	2	4	4		
Switch Phase	ı	U			4	4		
Minimum Initial (s)	4.0	8.0	8.0	8.0	8.0	8.0	8.0	
Minimum Split (s)	8.0	31.5	20.0	20.0	20.0	20.0	20.0	
Total Split (s)	8.0	40.0	32.0	32.0	20.0	20.0	20.0	
,	13.3%	66.7%	53.3%	53.3%	33.3%	33.3%	33%	
Total Split (%)		34.5	26.2	26.2				
Maximum Green (s)	4.0				14.7	14.7	13.8	
Yellow Time (s)	3.5	4.0	3.5	3.5	3.0	3.0	3.0	
All-Red Time (s)	0.5	1.5	2.3	2.3	2.3	2.3	3.2	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	4.0	5.5	5.8	5.8	5.3	5.3		
Lead/Lag	Lead		Lag	Lag				
Lead-Lag Optimize?	Yes	2.0	Yes	Yes	2.0	2.0	2.0	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	Min	Min	Min	None	None	None	
Walk Time (s)		8.0						
Flash Dont Walk (s)		12.0						
Pedestrian Calls (#/hr)	00.0	5	00.5	00.5	40.0	40.0		
Act Effct Green (s)	30.2	28.6	22.5	22.5	12.2	12.2		
Actuated g/C Ratio	0.58	0.55	0.43	0.43	0.23	0.23		
v/c Ratio	0.53	0.36	0.82	0.31	0.26	0.37		

East Hants Traffic Study 01/18/2024

		→	•		*	*		
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	Ø8	
Control Delay	14.1	4.8	24.5	4.4	20.4	6.0		
Queue Delay	0.0	0.1	0.0	0.0	0.0	0.0		
Total Delay	14.1	5.0	24.5	4.4	20.4	6.0		
LOS	В	Α	С	Α	С	Α		
Approach Delay		7.7	19.1		11.3			
Approach LOS		Α	В		В			
Queue Length 50th (m)	2.7	7.9	55.0	2.8	9.6	0.0		
Queue Length 95th (m)	#15.4	19.7	#114.5	13.9	20.6	12.6		
Internal Link Dist (m)		69.5	69.2		61.4			
Turn Bay Length (m)				30.0		60.0		
Base Capacity (vph)	301	1290	995	912	530	595		
Starvation Cap Reductn	0	276	0	0	0	0		
Spillback Cap Reductn	0	0	0	0	0	0		
Storage Cap Reductn	0	0	0	0	0	0		
Reduced v/c Ratio	0.53	0.37	0.67	0.27	0.21	0.31		

١.

J

Intersection Summary

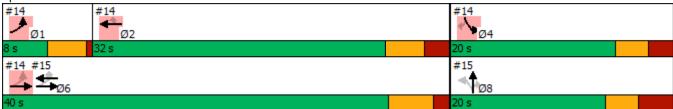
Area Type: Other

Cycle Length: 60

Actuated Cycle Length: 52.2

Natural Cycle: 60

Control Type: Semi Act-Uncoord


Maximum v/c Ratio: 0.82

Intersection Signal Delay: 14.2 Intersection LOS: B
Intersection Capacity Utilization 59.5% ICU Level of Service B

Analysis Period (min) 15

Queue shown is maximum after two cycles.

Splits and Phases: 14: Rte 214 & Mason

^{# 95}th percentile volume exceeds capacity, queue may be longer.

	•	→	←	•	\	1		
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	Ø8	
Lane Configurations	<u> </u>	<u></u>	<u> </u>	7	ኘ	7	20	
Traffic Volume (vph)	248	7 98	T 544	263	246	326		
· · · /	248	798	544	263	246	326		
Future Volume (vph)								
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Storage Length (m)	0.0			30.0	0.0	60.0		
Storage Lanes	1			1	1	1		
Taper Length (m)	20.0	4.00	4.00	4.00	20.0	4.00		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Ped Bike Factor	1.00			0.97	0.99	0.98		
Frt				0.850		0.850		
Flt Protected	0.950				0.950			
Satd. Flow (prot)	1789	1883	1883	1601	1789	1601		
Flt Permitted	0.223				0.950			
Satd. Flow (perm)	419	1883	1883	1553	1771	1565		
Right Turn on Red				Yes		Yes		
Satd. Flow (RTOR)				255		300		
Link Speed (k/h)		60	60		60			
Link Distance (m)		93.5	93.2		85.4			
Travel Time (s)		5.6	5.6		5.1			
Confl. Peds. (#/hr)	5			5	5	5		
Confl. Bikes (#/hr)	-			5		5		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	270	867	591	286	267	354		
Shared Lane Traffic (%)	2.0	001	00.	200		00.		
Lane Group Flow (vph)	270	867	591	286	267	354		
Turn Type	pm+pt	NA	NA	Perm	Prot	Perm		
Protected Phases	1	6	2	1 Cilli	4	1 Cilli	8	
Permitted Phases	6	U		2	7	4	U	
Detector Phase	1	6	2	2	4	4		
Switch Phase	ı	U			4	4		
	4.0	0.0	0.0	0.0	0.0	8.0	8.0	
Minimum Initial (s)	4.0 8.0	8.0 31.5	8.0 20.0	8.0 20.0	8.0 20.0	20.0	20.0	
Minimum Split (s)					20.0	20.0		
Total Split (s)	8.0	40.0	32.0	32.0			20.0	
Total Split (%)	13.3%	66.7%	53.3%	53.3%	33.3%	33.3%	33%	
Maximum Green (s)	4.0	34.5	26.2	26.2	14.7	14.7	13.8	
Yellow Time (s)	3.5	4.0	3.5	3.5	3.0	3.0	3.0	
All-Red Time (s)	0.5	1.5	2.3	2.3	2.3	2.3	3.2	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	4.0	5.5	5.8	5.8	5.3	5.3		
Lead/Lag	Lead		Lag	Lag				
Lead-Lag Optimize?	Yes		Yes	Yes			0.0	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	Min	Min	Min	None	None	None	
Walk Time (s)		8.0						
Flash Dont Walk (s)		12.0						
Pedestrian Calls (#/hr)		5						
Act Effct Green (s)	35.0	33.5	25.1	25.1	14.5	14.5		
Actuated g/C Ratio	0.60	0.57	0.43	0.43	0.25	0.25		
v/c Ratio	0.79	0.81	0.73	0.35	0.61	0.58		

East Hants Traffic Study 01/18/2024

	•	-	•	•	-	4	
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	Ø8
Control Delay	21.6	13.4	20.7	3.7	26.7	8.8	
Queue Delay	0.0	0.8	0.0	0.0	0.0	0.0	
Total Delay	21.6	14.2	20.7	3.7	26.7	8.8	
LOS	С	В	С	Α	С	Α	
Approach Delay		16.0	15.1		16.5		
Approach LOS		В	В		В		
Queue Length 50th (m)	9.9	38.4	50.6	1.9	26.1	4.7	
Queue Length 95th (m)	m#22.3	m#86.7	83.6	13.2	46.7	23.9	
Internal Link Dist (m)		69.5	69.2		61.4		
Turn Bay Length (m)				30.0		60.0	
Base Capacity (vph)	342	1107	841	834	448	616	
Starvation Cap Reductn	0	69	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.79	0.84	0.70	0.34	0.60	0.57	
Interportion Cummers							

Area Type: Other

Cycle Length: 60

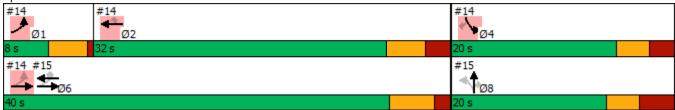
Actuated Cycle Length: 58.8

Natural Cycle: 75

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.89

Intersection Signal Delay: 15.8 Intersection LOS: B
Intersection Capacity Utilization 68.6% ICU Level of Service C


Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 14: Rte 214 & Mason

Lane Group EBL EBT WBT WBR SBL SBR Ø8 Lane Configurations 1 4 7 8 8 8 8 8 8 8 8 8 8 9 9 0 9 0 9 0 9 9 0 9 0
Lane Configurations 1 1 7 7 Traffic Volume (vph) 146 366 681 244 109 174 Future Volume (vph) 146 366 681 244 109 174 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 Storage Length (m) 0.0 30.0 0.0 60.0 Storage Lanes 1 1 1 1 Taper Length (m) 20.0 20.0 20.0 Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 Ped Bike Factor 0.97 0.99 0.98 8 9 0.850 0.850 0.850 0.850 0.850 0.850 0.850 0.950 Satd. Flow (prot) 1789 1883 1883 1601 1789 1601 1789 1601 1601 1601 1789 189 189 189 189 189 189 189 189 189 189 189
Traffic Volume (vph) 146 366 681 244 109 174 Future Volume (vph) 146 366 681 244 109 174 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 Storage Length (m) 0.0 30.0 0.0 60.0 Storage Lanes 1 1 1 1 Taper Length (m) 20.0 20.0 20.0 Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 Ped Bike Factor 0.97 0.99 0.98 7 0.99 0.98 Frt 0.850 0.850 0.850 0.850 0.850 Fit Protected 0.950 0.950 0.950 0.950 0.950 Satd. Flow (prot) 1789 1883 1883 1553 1771 1565 Right Turn on Red Yes Yes Yes Satd. Flow (RTOR) 189 189 Link Speed (k/h) 60
Future Volume (vph) 146 366 681 244 109 174 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 Storage Length (m) 0.0 30.0 0.0 60.0 Storage Lanes 1 1 1 1 Taper Length (m) 20.0 20.0 20.0 Lane Util. Factor 1.00 1.00 1.00 1.00 Ped Bike Factor 0.97 0.99 0.98 Frt 0.850 0.850 Fit Protected 0.950 0.950 Satd. Flow (prot) 1789 1883 1883 1601 1789 1601 Fit Permitted 0.139 0.950 0.950 0.950 0.950 Satd. Flow (perm) 262 1883 1883 1553 1771 1565 Right Turn on Red Yes Yes Yes Satd. Flow (RTOR) 189 189 Link Speed (k/h) 60 60 60
Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 Storage Length (m) 0.0 30.0 0.0 60.0 Storage Lanes 1 1 1 1 Taper Length (m) 20.0 20.0 20.0 Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 Ped Bike Factor 0.97 0.99 0.98 0.98 0.850 0.850 Fit Protected 0.950
Storage Length (m) 0.0 30.0 0.0 60.0 Storage Lanes 1 1 1 1 Taper Length (m) 20.0 20.0 20.0 Lane Util. Factor 1.00 1.00 1.00 1.00 Ped Bike Factor 0.97 0.99 0.98 Frt 0.850 0.850 Flt Protected 0.950 0.950 Satd. Flow (prot) 1789 1883 1883 1601 1789 1601 Flt Permitted 0.139 0.950 0.950 0.950 0.950 Satd. Flow (perm) 262 1883 1883 1553 1771 1565 Right Turn on Red Yes Yes Yes Satd. Flow (RTOR) 189 189 Link Speed (k/h) 60 60 60
Storage Lanes 1 0 0 9 0 9 0 9 0 9 0 9 0 8 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 <
Taper Length (m) 20.0 20.0 Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 Ped Bike Factor 0.97 0.99 0.98 Frt 0.850 0.850 Flt Protected 0.950 0.950 Satd. Flow (prot) 1789 1883 1883 1601 1789 1601 Flt Permitted 0.139 0.950 0.9
Lane Util. Factor 1.00 1.
Ped Bike Factor 0.97 0.99 0.98 Frt 0.850 0.850 Flt Protected 0.950 0.950 Satd. Flow (prot) 1789 1883 1883 1601 1789 1601 Flt Permitted 0.139 0.950
Frt 0.850 0.850 Flt Protected 0.950 0.950 Satd. Flow (prot) 1789 1883 1883 1601 1789 1601 Flt Permitted 0.139 0.950
Flt Protected 0.950 0.950 Satd. Flow (prot) 1789 1883 1883 1601 1789 1601 Flt Permitted 0.139 0.950 Satd. Flow (perm) 262 1883 1883 1553 1771 1565 Right Turn on Red Yes Yes Satd. Flow (RTOR) 189 189 Link Speed (k/h) 60 60 60
Satd. Flow (prot) 1789 1883 1883 1601 1789 1601 Flt Permitted 0.139 0.950 Satd. Flow (perm) 262 1883 1553 1771 1565 Right Turn on Red Yes Yes Satd. Flow (RTOR) 189 189 Link Speed (k/h) 60 60 60
Flt Permitted 0.139 0.950 Satd. Flow (perm) 262 1883 1553 1771 1565 Right Turn on Red Yes Yes Satd. Flow (RTOR) 189 189 Link Speed (k/h) 60 60 60
Satd. Flow (perm) 262 1883 1553 1771 1565 Right Turn on Red Yes Yes Satd. Flow (RTOR) 189 189 Link Speed (k/h) 60 60 60
Right Turn on Red Yes Yes Satd. Flow (RTOR) 189 189 Link Speed (k/h) 60 60 60
Satd. Flow (RTOR) 189 Link Speed (k/h) 60 60
Link Speed (k/h) 60 60 60
Link Distance (m) 93.5 93.2 85.4
$\lambda = I$
Travel Time (s) 5.6 5.6 5.1
Confl. Peds. (#/hr) 5 5 5
Confl. Bikes (#/hr) 5 5
Peak Hour Factor 0.92 0.92 0.92 0.92 0.92
Adj. Flow (vph) 159 398 740 265 118 189
Shared Lane Traffic (%)
Lane Group Flow (vph) 159 398 740 265 118 189
Turn Type pm+pt NA NA Perm Prot Perm
Protected Phases 1 6 2 4 8
Permitted Phases 6 2 4
Detector Phase 1 6 2 2 4 4
Switch Phase
Minimum Initial (s) 4.0 8.0 8.0 8.0 8.0 8.0
Minimum Split (s) 8.0 31.5 20.0 20.0 20.0 20.0 20.0
Total Split (s) 8.0 40.0 32.0 32.0 20.0 20.0 20.0
Total Split (%) 13.3% 66.7% 53.3% 53.3% 33.3% 33.3% 33%
Maximum Green (s) 4.0 34.5 26.2 26.2 14.7 14.7 13.8
Yellow Time (s) 3.5 4.0 3.5 3.0 3.0 3.0
All-Red Time (s) 0.5 1.5 2.3 2.3 2.3 3.2
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0
Total Lost Time (s) 4.0 5.5 5.8 5.8 5.3 5.3
Lead/Lag Lag Lag
Lead-Lag Optimize? Yes Yes Yes
Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0
Recall Mode None Min Min None None None
Walk Time (s) 8.0
Flash Dont Walk (s) 12.0
Pedestrian Calls (#/hr) 5
Act Effct Green (s) 32.3 30.7 24.5 24.5 13.3 13.3
Actuated g/C Ratio 0.59 0.56 0.44 0.44 0.24 0.24
v/c Ratio 0.59 0.38 0.89 0.33 0.27 0.36

East Hants Traffic Study 01/18/2024

	•	-	•	•	-	4	
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	Ø8
Control Delay	21.0	5.0	30.8	5.1	20.5	5.9	
Queue Delay	0.0	0.2	0.0	0.0	0.0	0.0	
Total Delay	21.0	5.2	30.8	5.1	20.5	5.9	
LOS	С	Α	С	Α	С	Α	
Approach Delay		9.7	24.0		11.5		
Approach LOS		Α	С		В		
Queue Length 50th (m)	3.0	9.2	71.6	4.7	10.5	0.0	
Queue Length 95th (m)	#23.0	20.7	#134.2	16.4	21.9	12.7	
Internal Link Dist (m)		69.5	69.2		61.4		
Turn Bay Length (m)				30.0		60.0	
Base Capacity (vph)	268	1218	925	858	493	568	
Starvation Cap Reductn	0	247	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.59	0.41	0.80	0.31	0.24	0.33	

Area Type: Other

Cycle Length: 60

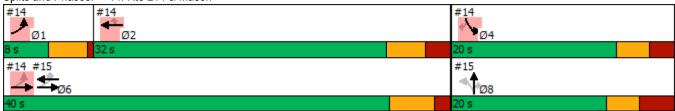
Actuated Cycle Length: 55.2

Natural Cycle: 60

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.89

Intersection Signal Delay: 17.7
Intersection Capacity Utilization 63.2%


Intersection LOS: B ICU Level of Service B

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 14: Rte 214 & Mason

	•	→	←	•	\	1		
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	Ø8	
Lane Configurations	ሻ	<u></u>	<u> </u>	7	ኘ	7	20	
Traffic Volume (vph)	250	873	586	276	260	333		
\ . <i>,</i>	250	873	586	276	260	333		
Future Volume (vph)								
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Storage Length (m)	0.0			30.0	0.0	60.0		
Storage Lanes	1			1	1	1		
Taper Length (m)	20.0	4.00	4.00	4.00	20.0	4.00		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Ped Bike Factor	1.00			0.97	0.99	0.98		
Frt				0.850		0.850		
Flt Protected	0.950				0.950			
Satd. Flow (prot)	1789	1883	1883	1601	1789	1601		
Flt Permitted	0.191				0.950			
Satd. Flow (perm)	359	1883	1883	1553	1771	1565		
Right Turn on Red				Yes		Yes		
Satd. Flow (RTOR)				248		279		
Link Speed (k/h)		60	60		60			
Link Distance (m)		93.5	93.2		85.4			
Travel Time (s)		5.6	5.6		5.1			
Confl. Peds. (#/hr)	5			5	5	5		
Confl. Bikes (#/hr)				5		5		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	272	949	637	300	283	362		
Shared Lane Traffic (%)								
Lane Group Flow (vph)	272	949	637	300	283	362		
Turn Type	pm+pt	NA	NA	Perm	Prot	Perm		
Protected Phases	1	6	2		4		8	
Permitted Phases	6			2		4		
Detector Phase	1	6	2	2	4	4		
Switch Phase								
Minimum Initial (s)	4.0	8.0	8.0	8.0	8.0	8.0	8.0	
Minimum Split (s)	8.0	31.5	20.0	20.0	20.0	20.0	20.0	
Total Split (s)	8.0	40.0	32.0	32.0	20.0	20.0	20.0	
Total Split (%)	13.3%	66.7%	53.3%	53.3%	33.3%	33.3%	33%	
Maximum Green (s)	4.0	34.5	26.2	26.2	14.7	14.7	13.8	
Yellow Time (s)	3.5	4.0	3.5	3.5	3.0	3.0	3.0	
All-Red Time (s)	0.5	1.5	2.3	2.3	2.3	2.3	3.2	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	Ų. <u>L</u>	
Total Lost Time (s)	4.0	5.5	5.8	5.8	5.3	5.3		
Lead/Lag	Lead	0.0	Lag	Lag	0.0	0.0		
Lead-Lag Optimize?	Yes		Yes	Yes				
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	Min	Min	Min	None	None	None	
Walk Time (s)	INUITE	8.0	IVIIII	IVIIII	NONE	NOILE	INOLIG	
Flash Dont Walk (s)		12.0						
Pedestrian Calls (#/hr)		5						
Act Effct Green (s)	36.0	34.5	26.2	26.2	14.7	14.7		
Actuated g/C Ratio	0.60	0.58	0.44	0.44	0.24	0.24		
•								
v/c Ratio	0.88	0.88	0.77	0.37	0.65	0.61		

	•	\rightarrow	•	•	-	4	
Lane Group	EBL	EBT	WBT	WBR	SBL	SBR	Ø8
Control Delay	31.9	16.9	22.8	4.2	28.5	10.5	
Queue Delay	0.0	2.5	0.0	0.0	0.0	0.0	
Total Delay	31.9	19.3	22.8	4.2	28.5	10.5	
LOS	С	В	С	Α	С	В	
Approach Delay		22.1	16.9		18.4		
Approach LOS		С	В		В		
Queue Length 50th (m)	10.6	44.6	56.5	3.2	27.9	7.3	
Queue Length 95th (m)	m#24.2 m	#143.0	#107.0	15.2	#50.8	28.3	
Internal Link Dist (m)		69.5	69.2		61.4		
Turn Bay Length (m)				30.0		60.0	
Base Capacity (vph)	310	1082	822	817	438	594	
Starvation Cap Reductn	0	60	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	0.88	0.93	0.77	0.37	0.65	0.61	

Area Type: Other

Cycle Length: 60 Actuated Cycle Length: 60 Natural Cycle: 90

Control Type: Semi Act-Uncoord Maximum v/c Ratio: 1.13

Intersection Signal Delay: 19.5 Intersection LOS: B
Intersection Capacity Utilization 71.7% ICU Level of Service C


Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 14: Rte 214 & Mason

	≯	→	•	•	+	•	•	†	<i>></i>	/	↓	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	*			†	7		4	7			
Traffic Volume (vph)	82	344	0	0	576	208	175	1	165	0	0	0
Future Volume (vph)	82	344	0	0	576	208	175	1	165	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	50.0	1000	0.0	0.0	1000	0.0	0.0	1000	0.0	0.0	1000	0.0
Storage Lanes	1		0.0	0.0		1	0.0		1	0.0		0.0
Taper Length (m)	20.0		· ·	20.0		•	20.0		•	20.0		O
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	1.00	1.00	1.00	1.00	0.97	1.00	0.99	0.98	1.00	1.00	1.00
Frt	1.00					0.850		0.00	0.850			
Flt Protected	0.950					0.000		0.953	0.000			
Satd. Flow (prot)	1789	1883	0	0	1883	1601	0	1795	1601	0	0	0
Flt Permitted	0.330	1000	U	U	1000	1001	U	0.953	1001	U	U	U
Satd. Flow (perm)	620	1883	0	0	1883	1552	0	1776	1564	0	0	0
Right Turn on Red	020	1000	Yes	U	1000	Yes	U	1770	Yes	U	U	Yes
Satd. Flow (RTOR)			163			226			179			163
Link Speed (k/h)		60			60	220		60	179		60	
Link Distance (m)		79.4			93.5			87.5			65.6	
Travel Time (s)		4.8			5.6			5.3			3.9	
Confl. Peds. (#/hr)	5	4.0	5	5	5.0	5	5	5.5	5	5	3.9	5
Confl. Bikes (#/hr)	5		5	5		5	5		5	J		5
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	89	374	0.92	0.92	626	226	190	0.92	179	0.92	0.92	0.92
Shared Lane Traffic (%)	09	374	U	U	020	220	190	1	179	U	U	U
	89	374	0	0	626	226	0	191	179	0	0	0
Lane Group Flow (vph) Turn Type	Perm	NA	U	U	NA	Perm	Perm	NA	Perm	U	U	U
Protected Phases	Fellii	6			6	Feiiii	Fellil	8	reiiii			
Permitted Phases	6	U			U	6	8	U	8			
Detector Phase	6	6			6	6	8	8	8			
Switch Phase	U	U			U	U	0	0	0			
Minimum Initial (s)	8.0	8.0			8.0	8.0	8.0	8.0	8.0			
Minimum Split (s)	31.5	31.5			31.5	31.5	20.0	20.0	20.0			
,	40.0	40.0			40.0	40.0	20.0	20.0	20.0			
Total Split (s) Total Split (%)	66.7%	66.7%			66.7%	66.7%	33.3%	33.3%	33.3%			
	34.5	34.5			34.5	34.5	13.8	13.8	13.8			
Maximum Green (s)	4.0	4.0			4.0	4.0	3.0	3.0	3.0			
Yellow Time (s)	1.5				1.5		3.2	3.2	3.0			
All-Red Time (s)	0.0	1.5 0.0			0.0	1.5 0.0	3.2	0.0	0.0			
Lost Time Adjust (s) Total Lost Time (s)	5.5	5.5			5.5	5.5		6.2	6.2			
Lead/Lag	5.5	5.5			5.5	5.5		0.2	0.2			
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0			3.0	3.0	3.0	3.0	3.0			
Recall Mode	Min	Min			Min	Min	None	None	None			
	8.0	8.0			8.0	8.0	NOHE	None	None			
Walk Time (s) Flash Dont Walk (s)	12.0	12.0			12.0	12.0						
. ,	12.0	12.0			12.0	12.0						
Pedestrian Calls (#/hr)		28.6			28.6	28.6		11.2	11.2			
Act Effct Green (s)	28.6											
Actuated g/C Ratio	0.55	0.55			0.55	0.55		0.21	0.21			
v/c Ratio	0.26	0.36			0.61	0.24		0.50	0.38			

Lane Group	Ø1	Ø2	Ø4
Lane Configurations		, DL	
Traffic Volume (vph)			
Future Volume (vph)			
Ideal Flow (vphpl)			
Storage Length (m)			
Storage Lanes			
Taper Length (m)			
Lane Util. Factor			
Ped Bike Factor			
Frt			
Flt Protected			
Satd. Flow (prot)			
Flt Permitted			
Satd. Flow (perm)			
Right Turn on Red			
Satd. Flow (RTOR)			
Link Speed (k/h)			
Link Distance (m)			
Travel Time (s)			
Confl. Peds. (#/hr)			
Confl. Bikes (#/hr)			
Peak Hour Factor			
Adj. Flow (vph)			
Shared Lane Traffic (%)			
Lane Group Flow (vph)			
Turn Type			
Protected Phases	1	2	4
Permitted Phases			
Detector Phase			
Switch Phase			
Minimum Initial (s)	4.0	8.0	8.0
Minimum Split (s)	8.0	20.0	20.0
Total Split (s)	8.0	32.0	20.0
Total Split (%)	13%	53%	33%
Maximum Green (s)	4.0	26.2	14.7
Yellow Time (s)	3.5	3.5	3.0
All-Red Time (s)	0.5	2.3	2.3
Lost Time Adjust (s)		_,•	•
Total Lost Time (s)			
Lead/Lag	Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	
Vehicle Extension (s)	3.0	3.0	3.0
Recall Mode	None	Min	None
Walk Time (s)	INOTIC	141111	140116
Flash Dont Walk (s)			
Pedestrian Calls (#/hr)			
Act Effct Green (s)			
Actuated g/C Ratio			
v/c Ratio			

	•	-	\rightarrow	•	•	•	•	†	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Control Delay	8.5	7.6			6.5	1.3		25.2	6.5			
Queue Delay	0.0	0.0			0.1	0.0		0.0	0.0			
Total Delay	8.5	7.6			6.6	1.3		25.2	6.5			
LOS	Α	Α			Α	Α		С	Α			
Approach Delay		7.7			5.2			16.1				
Approach LOS		Α			Α			В				
Queue Length 50th (m)	3.7	16.8			11.2	0.0		18.2	0.0			
Queue Length 95th (m)	11.1	32.7			33.2	m0.0		34.5	12.5			
Internal Link Dist (m)		55.4			69.5			63.5			41.6	
Turn Bay Length (m)	50.0											
Base Capacity (vph)	425	1290			1290	1134		494	564			
Starvation Cap Reductn	0	0			117	0		0	0			
Spillback Cap Reductn	0	0			0	0		0	0			
Storage Cap Reductn	0	0			0	0		0	0			
Reduced v/c Ratio	0.21	0.29			0.53	0.20		0.39	0.32			
Intercoction Cummany												

Area Type: Other

Cycle Length: 60

Actuated Cycle Length: 52.2

Natural Cycle: 60

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.82

Intersection Signal Delay: 8.3

Intersection LOS: A ICU Level of Service C

Intersection Capacity Utilization 67.7%

Analysis Period (min) 15

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 15: Exit 8 NB Ramps & Rte 214

Lane Group	Ø1	Ø2	Ø4
Control Delay			
Queue Delay			
Total Delay			
LOS			
Approach Delay			
Approach LOS			
Queue Length 50th (m)			
Queue Length 95th (m)			
Internal Link Dist (m)			
Turn Bay Length (m)			
Base Capacity (vph)			
Starvation Cap Reductn			
Spillback Cap Reductn			
Storage Cap Reductn			
Reduced v/c Ratio			
Intersection Summary			
intersection summary			

	≯	→	•	•	+	•	•	†	/	/	↓	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ች	*				7		4	7			
Traffic Volume (vph)	265	594	0	0	588	282	334	1	452	0	0	0
Future Volume (vph)	265	594	0	0	588	282	334	1	452	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	50.0		0.0	0.0	1000	0.0	0.0		0.0	0.0		0.0
Storage Lanes	1		0	0.0		1	0.0		1	0.0		0.0
Taper Length (m)	20.0			20.0		•	20.0		•	20.0		· ·
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00	1.00	1.00	1.00	1.00	0.97	1.00	0.99	0.98	1.00	1.00	1.00
Frt	1.00					0.850		0.00	0.850			
Flt Protected	0.950					0.000		0.953	0.000			
Satd. Flow (prot)	1789	1883	0	0	1883	1601	0	1795	1601	0	0	0
Flt Permitted	0.316	1000		•	1000	1001	•	0.953	1001	•	•	v
Satd. Flow (perm)	594	1883	0	0	1883	1552	0	1775	1564	0	0	0
Right Turn on Red	004	1000	Yes	U	1000	Yes	U	1770	Yes	U	U	Yes
Satd. Flow (RTOR)			100			307			*300			100
Link Speed (k/h)		60			60	001		60	000		60	
Link Distance (m)		79.4			93.5			87.5			65.6	
Travel Time (s)		4.8			5.6			5.3			3.9	
Confl. Peds. (#/hr)	5	7.0	5	5	0.0	5	5	0.0	5	5	0.0	5
Confl. Bikes (#/hr)	0		5	U		5	U		5	U		5
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	288	646	0.32	0.52	639	307	363	1	491	0.32	0.52	0.52
Shared Lane Traffic (%)	200	0.0			000	001	000		.0.			
Lane Group Flow (vph)	288	646	0	0	639	307	0	364	491	0	0	0
Turn Type	Perm	NA	•	•	NA	Perm	Perm	NA	Perm			
Protected Phases		6			6			8				
Permitted Phases	6					6	8		8			
Detector Phase	6	6			6	6	8	8	8			
Switch Phase												
Minimum Initial (s)	8.0	8.0			8.0	8.0	8.0	8.0	8.0			
Minimum Split (s)	31.5	31.5			31.5	31.5	20.0	20.0	20.0			
Total Split (s)	40.0	40.0			40.0	40.0	20.0	20.0	20.0			
Total Split (%)	66.7%	66.7%			66.7%	66.7%	33.3%	33.3%	33.3%			
Maximum Green (s)	34.5	34.5			34.5	34.5	13.8	13.8	13.8			
Yellow Time (s)	4.0	4.0			4.0	4.0	3.0	3.0	3.0			
All-Red Time (s)	1.5	1.5			1.5	1.5	3.2	3.2	3.2			
Lost Time Adjust (s)	0.0	0.0			0.0	0.0		0.0	0.0			
Total Lost Time (s)	5.5	5.5			5.5	5.5		6.2	6.2			
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0			3.0	3.0	3.0	3.0	3.0			
Recall Mode	Min	Min			Min	Min	None	None	None			
Walk Time (s)	8.0	8.0			8.0	8.0						
Flash Dont Walk (s)	12.0	12.0			12.0	12.0						
Pedestrian Calls (#/hr)	5	5			5	5						
Act Effct Green (s)	33.5	33.5			33.5	33.5		13.6	13.6			
Actuated g/C Ratio	0.57	0.57			0.57	0.57		0.23	0.23			
v/c Ratio	0.85	0.60			0.60	0.30		0.89	0.83			

Lane Group	Ø1	Ø2	Ø4
Lane Configurations			
Traffic Volume (vph)			
Future Volume (vph)			
Ideal Flow (vphpl)			
Storage Length (m)			
Storage Lanes			
Taper Length (m)			
Lane Util. Factor			
Ped Bike Factor			
Frt			
Flt Protected			
Satd. Flow (prot)			
Flt Permitted			
Satd. Flow (perm)			
Right Turn on Red			
Satd. Flow (RTOR)			
Link Speed (k/h)			
Link Distance (m)			
Travel Time (s)			
Confl. Peds. (#/hr)			
Confl. Bikes (#/hr)			
Peak Hour Factor			
Adj. Flow (vph)			
Shared Lane Traffic (%)			
Lane Group Flow (vph)			
Turn Type			
Protected Phases	1	2	4
Permitted Phases	•		
Detector Phase			
Switch Phase			
Minimum Initial (s)	4.0	8.0	8.0
Minimum Split (s)	8.0	20.0	20.0
,			
Total Split (s)	8.0	32.0	20.0
Total Split (%)	13%	53%	33%
Maximum Green (s)	4.0	26.2	14.7
Yellow Time (s)	3.5	3.5	3.0
All-Red Time (s)	0.5	2.3	2.3
Lost Time Adjust (s)			
Total Lost Time (s)			
Lead/Lag	Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	
Vehicle Extension (s)	3.0	3.0	3.0
Recall Mode	None	Min	None
Walk Time (s)			
Flash Dont Walk (s)			
Pedestrian Calls (#/hr)			
Act Effct Green (s)			
Actuated g/C Ratio			
v/c Ratio			
VIOTALIO			

	•	-	•	•	•	•	\blacktriangleleft	†		-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Control Delay	38.5	11.3			7.1	1.3		49.2	23.5			
Queue Delay	0.0	0.2			0.3	0.2		0.0	0.5			
Total Delay	38.5	11.5			7.4	1.5		49.2	24.0			
LOS	D	В			Α	Α		D	С			
Approach Delay		19.8			5.5			34.7				
Approach LOS		В			Α			С				
Queue Length 50th (m)	23.1	40.6			19.5	0.0		38.9	18.5			
Queue Length 95th (m)	#67.0	67.2			43.7	m3.3		#80.9	#66.4			
Internal Link Dist (m)		55.4			69.5			63.5			41.6	
Turn Bay Length (m)	50.0											
Base Capacity (vph)	349	1107			1107	1038		417	597			
Starvation Cap Reductn	0	0			120	206		0	0			
Spillback Cap Reductn	0	75			0	0		0	11			
Storage Cap Reductn	0	0			0	0		0	0			
Reduced v/c Ratio	0.83	0.63			0.65	0.37		0.87	0.84			

Area Type: Other

Cycle Length: 60

Actuated Cycle Length: 58.8

Natural Cycle: 75

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.89

Intersection Signal Delay: 19.5 Intersection LOS: B
Intersection Capacity Utilization 85.2% ICU Level of Service E

Analysis Period (min) 15

* User Entered Value

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 15: Exit 8 NB Ramps & Rte 214

Lane Group	Ø1	Ø2	Ø4
Control Delay			
Queue Delay			
Total Delay			
LOS			
Approach Delay			
Approach LOS			
Queue Length 50th (m)			
Queue Length 95th (m)			
Internal Link Dist (m)			
Turn Bay Length (m)			
Base Capacity (vph)			
Starvation Cap Reductn			
Spillback Cap Reductn			
Storage Cap Reductn			
Reduced v/c Ratio			
Intersection Summary			
intersection summary			

	۶	→	•	•	+	•	•	†	<i>></i>	/	+	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	*				7		ર્ન	7			
Traffic Volume (vph)	100	360	0	0	623	233	254	1	175	0	0	0
Future Volume (vph)	100	360	0	0	623	233	254	1	175	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	50.0		0.0	0.0		0.0	0.0		0.0	0.0		0.0
Storage Lanes	1		0	0		1	0		1	0		0
Taper Length (m)	20.0		_	20.0			20.0			20.0		-
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00					0.97		0.99	0.98			
Frt						0.850			0.850			
Flt Protected	0.950							0.953				
Satd. Flow (prot)	1789	1883	0	0	1883	1601	0	1795	1601	0	0	0
Flt Permitted	0.292		•					0.953				•
Satd. Flow (perm)	549	1883	0	0	1883	1552	0	1775	1564	0	0	0
Right Turn on Red	010	1000	Yes	· ·	1000	Yes		1770	Yes	•	•	Yes
Satd. Flow (RTOR)			100			253			190			100
Link Speed (k/h)		60			60	200		60	100		60	
Link Opeca (km)		79.4			93.5			87.5			65.6	
Travel Time (s)		4.8			5.6			5.3			3.9	
Confl. Peds. (#/hr)	5	7.0	5	5	0.0	5	5	0.0	5	5	0.0	5
Confl. Bikes (#/hr)	J		5	3		5	5		5	0		5
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	109	391	0.52	0.52	677	253	276	1	190	0.32	0.52	0.52
Shared Lane Traffic (%)	103	331	U	U	011	200	210		130	U	U	U
Lane Group Flow (vph)	109	391	0	0	677	253	0	277	190	0	0	0
Turn Type	Perm	NA	U U	0	NA	Perm	Perm	NA	Perm	U	- U	J
Protected Phases	1 Cilli	6			6	1 Cilli	1 Cilli	8	1 Cilli			
Permitted Phases	6				0	6	8	U	8			
Detector Phase	6	6			6	6	8	8	8			
Switch Phase	0				0	U	0	U	J			
Minimum Initial (s)	8.0	8.0			8.0	8.0	8.0	8.0	8.0			
Minimum Split (s)	31.5	31.5			31.5	31.5	20.0	20.0	20.0			
Total Split (s)	40.0	40.0			40.0	40.0	20.0	20.0	20.0			
Total Split (%)	66.7%	66.7%			66.7%	66.7%	33.3%	33.3%	33.3%			
Maximum Green (s)	34.5	34.5			34.5	34.5	13.8	13.8	13.8			
Yellow Time (s)	4.0	4.0			4.0	4.0	3.0	3.0	3.0			
All-Red Time (s)	1.5	1.5			1.5	1.5	3.2	3.2	3.2			
Lost Time Adjust (s)	0.0	0.0			0.0	0.0	3.2	0.0	0.0			
Total Lost Time (s)	5.5	5.5			5.5	5.5		6.2	6.2			
Lead/Lag	5.5	5.5			5.5	5.5		0.2	0.2			
Lead-Lag Optimize?												
	3.0	3.0			3.0	3.0	3.0	3.0	3.0			
Vehicle Extension (s)												
Recall Mode	Min	Min			Min	Min	None	None	None			
Walk Time (s)	8.0	8.0			8.0	8.0						
Flash Dont Walk (s)	12.0	12.0			12.0	12.0						
Pedestrian Calls (#/hr)	5	5			5	5		40.4	40.4			
Act Effet Green (s)	30.7	30.7			30.7	30.7		12.4	12.4			
Actuated g/C Ratio	0.56	0.56			0.56	0.56		0.22	0.22			
v/c Ratio	0.36	0.37			0.65	0.26		0.70	0.38			

Lane Group	Ø1	Ø2	Ø4
Lane Configurations			
Traffic Volume (vph)			
Future Volume (vph)			
Ideal Flow (vphpl)			
Storage Length (m)			
Storage Lanes			
Taper Length (m)			
Lane Util. Factor			
Ped Bike Factor			
Frt			
Flt Protected			
Satd. Flow (prot)			
Flt Permitted			
Satd. Flow (perm)			
Right Turn on Red			
Satd. Flow (RTOR)			
Link Speed (k/h)			
Link Distance (m)			
Travel Time (s)			
Confl. Peds. (#/hr)			
Confl. Bikes (#/hr)			
Peak Hour Factor			
Adj. Flow (vph)			
Shared Lane Traffic (%)			
Lane Group Flow (vph)			
Turn Type			
Protected Phases	1	2	4
Permitted Phases	•		
Detector Phase			
Switch Phase			
Minimum Initial (s)	4.0	8.0	8.0
Minimum Split (s)	8.0	20.0	20.0
,			
Total Split (s)	8.0	32.0	20.0
Total Split (%)	13%	53%	33%
Maximum Green (s)	4.0	26.2	14.7
Yellow Time (s)	3.5	3.5	3.0
All-Red Time (s)	0.5	2.3	2.3
Lost Time Adjust (s)			
Total Lost Time (s)			
Lead/Lag	Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	
Vehicle Extension (s)	3.0	3.0	3.0
Recall Mode	None	Min	None
Walk Time (s)			
Flash Dont Walk (s)			
Pedestrian Calls (#/hr)			
Act Effct Green (s)			
Actuated g/C Ratio			
v/c Ratio			
VIOTALIO			

	•	-	•	•	•	•	1	†	/	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Control Delay	10.9	8.0			6.9	1.3		32.1	6.3			
Queue Delay	0.0	0.0			0.2	0.0		0.0	0.0			
Total Delay	10.9	8.0			7.1	1.3		32.1	6.3			
LOS	В	Α			Α	Α		С	Α			
Approach Delay		8.6			5.5			21.6				
Approach LOS		Α			Α			С				
Queue Length 50th (m)	5.6	20.3			14.4	0.0		27.9	0.0			
Queue Length 95th (m)	14.9	34.4			m31.8	m0.0		#55.8	13.0			
Internal Link Dist (m)		55.4			69.5			63.5			41.6	
Turn Bay Length (m)	50.0											
Base Capacity (vph)	355	1218			1218	1093		459	545			
Starvation Cap Reductn	0	0			118	0		0	0			
Spillback Cap Reductn	0	0			0	0		0	0			
Storage Cap Reductn	0	0			0	0		0	0			
Reduced v/c Ratio	0.31	0.32			0.62	0.23		0.60	0.35			

Area Type: Other

Cycle Length: 60

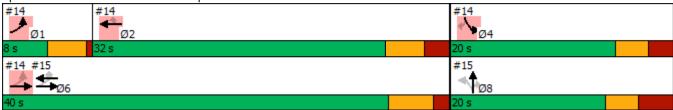
Actuated Cycle Length: 55.2

Natural Cycle: 60

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.89

Intersection Signal Delay: 10.3 Intersection LOS: B
Intersection Capacity Utilization 74.6% ICU Level of Service D


Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 15: Exit 8 NB Ramps & Rte 214

Lane Group	Ø1	Ø2	Ø4
Control Delay			
Queue Delay			
Total Delay			
LOS			
Approach Delay			
Approach LOS			
Queue Length 50th (m)			
Queue Length 95th (m)			
Internal Link Dist (m)			
Turn Bay Length (m)			
Base Capacity (vph)			
Starvation Cap Reductn			
Spillback Cap Reductn			
Storage Cap Reductn			
Reduced v/c Ratio			
Intersection Summary			
intersection summary			

	۶	→	•	•	←	•	4	†	/	>	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	†			†	7		4	7			
Traffic Volume (vph)	334	631	0	0	614	306	360	1	492	0	0	0
Future Volume (vph)	334	631	0	0	614	306	360	1	492	0	0	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	50.0		0.0	0.0		0.0	0.0		0.0	0.0		0.0
Storage Lanes	1		0	0		1	0		1	0		0
Taper Length (m)	20.0			20.0			20.0			20.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	1.00					0.97		0.99	0.98			
Frt						0.850			0.850			
Flt Protected	0.950							0.952				
Satd. Flow (prot)	1789	1883	0	0	1883	1601	0	1793	1601	0	0	0
Flt Permitted	0.298							0.952				
Satd. Flow (perm)	560	1883	0	0	1883	1552	0	1774	1564	0	0	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)						333			*300			
Link Speed (k/h)		60			60			60			60	
Link Distance (m)		79.4			93.5			87.5			65.6	
Travel Time (s)		4.8			5.6			5.3			3.9	
Confl. Peds. (#/hr)	5		5	5		5	5		5	5		5
Confl. Bikes (#/hr)	•		5			5			5			5
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	363	686	0	0	667	333	391	1	535	0	0	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	363	686	0	0	667	333	0	392	535	0	0	0
Turn Type	Perm	NA			NA	Perm	Perm	NA	Perm			
Protected Phases		6			6			8				
Permitted Phases	6					6	8		8			
Detector Phase	6	6			6	6	8	8	8			
Switch Phase												
Minimum Initial (s)	8.0	8.0			8.0	8.0	8.0	8.0	8.0			
Minimum Split (s)	31.5	31.5			31.5	31.5	20.0	20.0	20.0			
Total Split (s)	40.0	40.0			40.0	40.0	20.0	20.0	20.0			
Total Split (%)	66.7%	66.7%			66.7%	66.7%	33.3%	33.3%	33.3%			
Maximum Green (s)	34.5	34.5			34.5	34.5	13.8	13.8	13.8			
Yellow Time (s)	4.0	4.0			4.0	4.0	3.0	3.0	3.0			
All-Red Time (s)	1.5	1.5			1.5	1.5	3.2	3.2	3.2			
Lost Time Adjust (s)	0.0	0.0			0.0	0.0		0.0	0.0			
Total Lost Time (s)	5.5	5.5			5.5	5.5		6.2	6.2			
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0			3.0	3.0	3.0	3.0	3.0			
Recall Mode	Min	Min			Min	Min	None	None	None			
Walk Time (s)	8.0	8.0			8.0	8.0	110110	110110	110110			
Flash Dont Walk (s)	12.0	12.0			12.0	12.0						
Pedestrian Calls (#/hr)	5	5			5	5						
Act Effct Green (s)	34.5	34.5			34.5	34.5		13.8	13.8			
Actuated g/C Ratio	0.58	0.58			0.58	0.58		0.23	0.23			
v/c Ratio	1.13	0.63			0.62	0.32		0.23	0.23			
v,o rado	1.10	0.00			0.02	0.02		0.00	0.01			

Lane Group	Ø1	Ø2	Ø4
Lane Configurations			
Traffic Volume (vph)			
Future Volume (vph)			
Ideal Flow (vphpl)			
Storage Length (m)			
Storage Lanes			
Taper Length (m)			
Lane Util. Factor			
Ped Bike Factor			
Frt			
Flt Protected			
Satd. Flow (prot)			
Flt Permitted			
Satd. Flow (perm)			
Right Turn on Red			
Satd. Flow (RTOR)			
Link Speed (k/h)			
Link Distance (m)			
Travel Time (s)			
Confl. Peds. (#/hr)			
Confl. Bikes (#/hr)			
Peak Hour Factor			
Adj. Flow (vph)			
Shared Lane Traffic (%)			
Lane Group Flow (vph)			
Turn Type			
Protected Phases	1	2	4
Permitted Phases	•		
Detector Phase			
Switch Phase			
Minimum Initial (s)	4.0	8.0	8.0
Minimum Split (s)	8.0	20.0	20.0
,			
Total Split (s)	8.0	32.0	20.0
Total Split (%)	13%	53%	33%
Maximum Green (s)	4.0	26.2	14.7
Yellow Time (s)	3.5	3.5	3.0
All-Red Time (s)	0.5	2.3	2.3
Lost Time Adjust (s)			
Total Lost Time (s)			
Lead/Lag	Lead	Lag	
Lead-Lag Optimize?	Yes	Yes	
Vehicle Extension (s)	3.0	3.0	3.0
Recall Mode	None	Min	None
Walk Time (s)			
Flash Dont Walk (s)			
Pedestrian Calls (#/hr)			
Act Effct Green (s)			
Actuated g/C Ratio			
v/c Ratio			
VIOTALIO			

	•	→	•	•	•	•	1	†	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Control Delay	108.8	11.9			7.2	1.3		62.8	32.9			
Queue Delay	0.0	0.4			0.5	0.2		0.0	2.1			
Total Delay	108.8	12.3			7.7	1.5		62.8	34.9			
LOS	F	В			Α	Α		Е	С			
Approach Delay		45.7			5.6			46.7				
Approach LOS		D			Α			D				
Queue Length 50th (m)	~47.8	44.5			21.6	0.0		42.8	24.6			
Queue Length 95th (m)	#90.9	73.9			m44.3	m3.0		#89.0	#78.9			
Internal Link Dist (m)		55.4			69.5			63.5			41.6	
Turn Bay Length (m)	50.0											
Base Capacity (vph)	322	1082			1082	1033		408	590			
Starvation Cap Reductn	0	0			128	206		0	0			
Spillback Cap Reductn	0	101			0	0		0	15			
Storage Cap Reductn	0	0			0	0		0	0			
Reduced v/c Ratio	1.13	0.70			0.70	0.40		0.96	0.93			

Area Type: Other

Cycle Length: 60

Actuated Cycle Length: 60

Natural Cycle: 90

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 1.13

Intersection Signal Delay: 32.6 Intersection Capacity Utilization 91.8% Intersection LOS: C

ICU Level of Service F

Analysis Period (min) 15

- * User Entered Value
- Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

m Volume for 95th percentile queue is metered by upstream signal.

Splits and Phases: 15: Exit 8 NB Ramps & Rte 214

Lane Group	Ø1	Ø2	Ø4
Control Delay			
Queue Delay			
Total Delay			
LOS			
Approach Delay			
Approach LOS			
Queue Length 50th (m)			
Queue Length 95th (m)			
Internal Link Dist (m)			
Turn Bay Length (m)			
Base Capacity (vph)			
Starvation Cap Reductn			
Spillback Cap Reductn			
Storage Cap Reductn			
Reduced v/c Ratio			
Intersection Summary			
intersection Carrinary			

	۶	→	•	•	+	4	1	†	~	/	+	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*	7	ሻ	1						ર્ન	7
Traffic Volume (vph)	0	341	263	339	455	0	0	0	0	78	0	206
Future Volume (vph)	0	341	263	339	455	0	0	0	0	78	0	206
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0		15.0	30.0		0.0	0.0		0.0	15.0		0.0
Storage Lanes	0		1	1		0	0		0	0		1
Taper Length (m)	20.0			20.0			20.0			20.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor			0.96	1.00							0.99	0.96
Frt			0.850									0.850
Flt Protected				0.950							0.950	
Satd. Flow (prot)	0	1883	1601	1789	1883	0	0	0	0	0	1789	1601
Flt Permitted				0.269							0.950	
Satd. Flow (perm)	0	1883	1544	504	1883	0	0	0	0	0	1768	1537
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			165									224
Link Speed (k/h)		60			60			60			60	
Link Distance (m)		91.9			95.6			86.4			82.5	
Travel Time (s)		5.5			5.7			5.2			5.0	
Confl. Peds. (#/hr)	5		5	5		5	5		5	5		5
Confl. Bikes (#/hr)			5			5	-		5			5
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	371	286	368	495	0	0	0	0	85	0	224
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	371	286	368	495	0	0	0	0	0	85	224
Turn Type		NA	Perm	pm+pt	NA					Perm	NA	Perm
Protected Phases		4		3	8					. •	6	
Permitted Phases			4	8						6		6
Detector Phase		4	4	3	8					6	6	6
Switch Phase												
Minimum Initial (s)		8.0	8.0	8.0	8.0					8.0	8.0	8.0
Minimum Split (s)		26.0	26.0	14.0	26.0					26.0	26.0	26.0
Total Split (s)		50.0	50.0	18.0	54.0					26.0	26.0	26.0
Total Split (%)		53.2%	53.2%	19.1%	57.4%					27.7%	27.7%	27.7%
Maximum Green (s)		44.0	44.0	12.0	48.0					20.0	20.0	20.0
Yellow Time (s)		4.0	4.0	4.0	4.0					4.0	4.0	4.0
All-Red Time (s)		2.0	2.0	2.0	2.0					2.0	2.0	2.0
Lost Time Adjust (s)		0.0	0.0	0.0	0.0						0.0	0.0
Total Lost Time (s)		6.0	6.0	6.0	6.0						6.0	6.0
Lead/Lag		Lag	Lag	Lead								
Lead-Lag Optimize?		Yes	Yes	Yes								
Vehicle Extension (s)		3.0	3.0	3.0	3.0					3.0	3.0	3.0
Recall Mode		None	None	None	None					Max	Max	Max
Walk Time (s)		8.0	8.0		8.0					8.0	8.0	8.0
Flash Dont Walk (s)		12.0	12.0		12.0					12.0	12.0	12.0
Pedestrian Calls (#/hr)		5	5		5					5	5	5
Act Effct Green (s)		19.6	19.6	37.2	37.2						20.2	20.2
Actuated g/C Ratio		0.28	0.28	0.54	0.54						0.29	0.29
v/c Ratio		0.70	0.52	0.76	0.49						0.17	0.37
		5	J.U_	55	55						÷	5.0.

	•	-	•	•	←	*	1	†	/	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Control Delay		29.6	12.2	21.1	11.8						21.8	5.6
Queue Delay		0.0	0.0	0.0	0.0						0.0	0.0
Total Delay		29.6	12.2	21.1	11.8						21.8	5.6
LOS		С	В	С	В						С	Α
Approach Delay		22.1			15.7						10.1	
Approach LOS		С			В						В	
Queue Length 50th (m)		42.9	12.2	25.4	37.0						8.2	0.0
Queue Length 95th (m)		68.0	30.8	#46.0	57.0						20.8	15.6
Internal Link Dist (m)		67.9			71.6			62.4			58.5	
Turn Bay Length (m)			15.0	30.0								
Base Capacity (vph)		1201	1044	493	1679						513	604
Starvation Cap Reductn		0	0	0	0						0	0
Spillback Cap Reductn		0	0	0	0						0	0
Storage Cap Reductn		0	0	0	0						0	0
Reduced v/c Ratio		0.31	0.27	0.75	0.29						0.17	0.37

Area Type: Other

Cycle Length: 94

Actuated Cycle Length: 69.5

Natural Cycle: 70

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.76

Intersection Signal Delay: 17.1
Intersection Capacity Utilization 68.4%

Intersection LOS: B
ICU Level of Service C

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 16: Rte 214 & Exit 8 SB Ramps

	۶	→	•	•	+	4	1	†	~	/	+	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*	7	ሻ	1						ર્ન	7
Traffic Volume (vph)	0	665	251	184	703	0	0	0	0	133	Ö	156
Future Volume (vph)	0	665	251	184	703	0	0	0	0	133	0	156
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0		15.0	30.0		0.0	0.0		0.0	15.0		0.0
Storage Lanes	0		1	1		0	0		0	0		1
Taper Length (m)	20.0			20.0			20.0			20.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor			0.96								0.99	0.96
Frt			0.850									0.850
Flt Protected				0.950							0.950	
Satd. Flow (prot)	0	1883	1601	1789	1883	0	0	0	0	0	1789	1601
Flt Permitted				0.104							0.950	
Satd. Flow (perm)	0	1883	1544	196	1883	0	0	0	0	0	1768	1537
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			104									170
Link Speed (k/h)		60			60			60			60	
Link Distance (m)		91.9			95.6			86.4			82.5	
Travel Time (s)		5.5			5.7			5.2			5.0	
Confl. Peds. (#/hr)	5		5	5		5	5		5	5		5
Confl. Bikes (#/hr)	•		5			5	-		5	_		5
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	723	273	200	764	0	0	0	0	145	0	170
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	723	273	200	764	0	0	0	0	0	145	170
Turn Type		NA	Perm	pm+pt	NA					Perm	NA	Perm
Protected Phases		4		3	8						6	
Permitted Phases			4	8						6		6
Detector Phase		4	4	3	8					6	6	6
Switch Phase		-										
Minimum Initial (s)		8.0	8.0	8.0	8.0					8.0	8.0	8.0
Minimum Split (s)		26.0	26.0	14.0	26.0					26.0	26.0	26.0
Total Split (s)		52.0	52.0	15.0	67.0					27.0	27.0	27.0
Total Split (%)		55.3%	55.3%	16.0%	71.3%					28.7%	28.7%	28.7%
Maximum Green (s)		46.0	46.0	9.0	61.0					21.0	21.0	21.0
Yellow Time (s)		4.0	4.0	4.0	4.0					4.0	4.0	4.0
All-Red Time (s)		2.0	2.0	2.0	2.0					2.0	2.0	2.0
Lost Time Adjust (s)		0.0	0.0	0.0	0.0						0.0	0.0
Total Lost Time (s)		6.0	6.0	6.0	6.0						6.0	6.0
Lead/Lag		Lag	Lag	Lead								
Lead-Lag Optimize?		Yes	Yes	Yes								
Vehicle Extension (s)		3.0	3.0	3.0	3.0					3.0	3.0	3.0
Recall Mode		None	None	None	None					Max	Max	Max
Walk Time (s)		8.0	8.0	110110	8.0					8.0	8.0	8.0
Flash Dont Walk (s)		12.0	12.0		12.0					12.0	12.0	12.0
Pedestrian Calls (#/hr)		5	5		5					5	5	5
Act Effct Green (s)		37.8	37.8	52.7	52.7						21.2	21.2
Actuated g/C Ratio		0.44	0.44	0.61	0.61						0.25	0.25
v/c Ratio		0.44	0.37	0.71	0.66						0.23	0.23
7,5114110		0.07	0.07	0.7 1	0.00						0.00	0.07

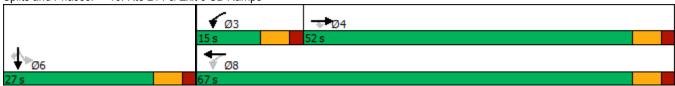
	•	-	•	•	←	•	•	†	/	>	Ų.	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Control Delay		34.3	10.6	27.9	13.9						31.6	7.1
Queue Delay		0.0	0.0	0.0	0.0						0.0	0.0
Total Delay		34.3	10.6	27.9	13.9						31.6	7.1
LOS		С	В	С	В						С	Α
Approach Delay		27.8			16.8						18.3	
Approach LOS		С			В						В	
Queue Length 50th (m)		104.2	16.8	13.3	73.3						20.8	0.0
Queue Length 95th (m)		152.0	33.3	#43.4	107.4						39.5	15.6
Internal Link Dist (m)		67.9			71.6			62.4			58.5	
Turn Bay Length (m)			15.0	30.0								
Base Capacity (vph)		1017	881	288	1348						435	507
Starvation Cap Reductn		0	0	0	0						0	0
Spillback Cap Reductn		0	0	0	0						0	0
Storage Cap Reductn		0	0	0	0						0	0
Reduced v/c Ratio		0.71	0.31	0.69	0.57						0.33	0.34

Area Type: Other

Cycle Length: 94
Actuated Cycle Length: 86

Natural Cycle: 80

Control Type: Semi Act-Uncoord


Maximum v/c Ratio: 0.87

Intersection Signal Delay: 21.8 Intersection LOS: C
Intersection Capacity Utilization 76.9% ICU Level of Service D

Analysis Period (min) 15

Queue shown is maximum after two cycles.

Splits and Phases: 16: Rte 214 & Exit 8 SB Ramps

^{# 95}th percentile volume exceeds capacity, queue may be longer.

	۶	→	•	•	+	4	1	†	~	/	+	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations			7	ሻ	1						ર્ન	7
Traffic Volume (vph)	0	370	282	360	559	0	0	0	0	83	0	292
Future Volume (vph)	0	370	282	360	559	0	0	0	0	83	0	292
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0		0.0	30.0		0.0	0.0		0.0	15.0		0.0
Storage Lanes	0		1	1		0	0		0	0		1
Taper Length (m)	20.0			20.0			20.0			20.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor			0.96	1.00							0.99	0.98
Frt			0.850									0.850
Flt Protected				0.950							0.950	
Satd. Flow (prot)	0	1883	1601	1789	1883	0	0	0	0	0	1789	1601
Flt Permitted				0.251							0.950	
Satd. Flow (perm)	0	1883	1544	471	1883	0	0	0	0	0	1768	1562
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			307									317
Link Speed (k/h)		60			60			60			60	
Link Distance (m)		91.9			95.6			86.4			82.5	
Travel Time (s)		5.5			5.7			5.2			5.0	
Confl. Peds. (#/hr)	5		5	5		5	5		5	5		5
Confl. Bikes (#/hr)			5			5	_		5			5
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	402	307	391	608	0	0	0	0	90	0	317
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	402	307	391	608	0	0	0	0	0	90	317
Turn Type		NA	Perm	pm+pt	NA					Perm	NA	Perm
Protected Phases		4		3	8					. •	6	
Permitted Phases			4	8						6		6
Detector Phase		4	4	3	8					6	6	6
Switch Phase												
Minimum Initial (s)		8.0	8.0	8.0	8.0					8.0	8.0	8.0
Minimum Split (s)		26.0	26.0	14.0	26.0					26.0	26.0	26.0
Total Split (s)		50.0	50.0	18.0	54.0					26.0	26.0	26.0
Total Split (%)		53.2%	53.2%	19.1%	57.4%					27.7%	27.7%	27.7%
Maximum Green (s)		44.0	44.0	12.0	48.0					20.0	20.0	20.0
Yellow Time (s)		4.0	4.0	4.0	4.0					4.0	4.0	4.0
All-Red Time (s)		2.0	2.0	2.0	2.0					2.0	2.0	2.0
Lost Time Adjust (s)		0.0	0.0	0.0	0.0						0.0	0.0
Total Lost Time (s)		6.0	6.0	6.0	6.0						6.0	6.0
Lead/Lag		Lag	Lag	Lead								
Lead-Lag Optimize?		Yes	Yes	Yes								
Vehicle Extension (s)		3.0	3.0	3.0	3.0					3.0	3.0	3.0
Recall Mode		None	None	None	None					Max	Max	Max
Walk Time (s)		8.0	8.0	110110	8.0					8.0	8.0	8.0
Flash Dont Walk (s)		12.0	12.0		12.0					12.0	12.0	12.0
Pedestrian Calls (#/hr)		5	5		5					5	5	5
Act Effct Green (s)		21.4	21.4	39.2	39.2						20.2	20.2
Actuated g/C Ratio		0.30	0.30	0.55	0.55						0.28	0.28
v/c Ratio		0.30	0.45	0.82	0.59						0.20	0.20
V/O I KULIO		0.7 1	0.73	0.02	0.00						0.10	U.T1

	•	→	•	•	←	•	1	†	~	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Control Delay		29.6	4.6	26.3	13.2						23.1	5.9
Queue Delay		0.0	0.0	0.0	0.0						0.0	0.0
Total Delay		29.6	4.6	26.3	13.2						23.1	5.9
LOS		С	Α	С	В						С	Α
Approach Delay		18.8			18.3						9.7	
Approach LOS		В			В						Α	
Queue Length 50th (m)		47.5	0.0	27.5	49.4						9.2	0.0
Queue Length 95th (m)		73.9	14.4	#56.6	74.6						22.9	18.5
Internal Link Dist (m)		67.9			71.6			62.4			58.5	
Turn Bay Length (m)				30.0								
Base Capacity (vph)		1169	1075	481	1644						499	668
Starvation Cap Reductn		0	0	0	0						0	0
Spillback Cap Reductn		0	0	0	0						0	0
Storage Cap Reductn		0	0	0	0						0	0
Reduced v/c Ratio		0.34	0.29	0.81	0.37						0.18	0.47

Area Type: Other

Cycle Length: 94

Actuated Cycle Length: 71.5

Natural Cycle: 70

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.82


Intersection Signal Delay: 16.8
Intersection Capacity Utilization 71.1%

Intersection LOS: B
ICU Level of Service C

Analysis Period (min) 15

Queue shown is maximum after two cycles.

Splits and Phases: 16: Rte 214 & Exit 8 SB Ramps

^{# 95}th percentile volume exceeds capacity, queue may be longer.

	۶	→	•	•	←	4	•	†	~	/	+	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*	7	ሻ	1						ર્ન	7
Traffic Volume (vph)	0	751	316	197	742	0	0	0	0	153	0	182
Future Volume (vph)	0	751	316	197	742	0	0	0	0	153	0	182
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0		0.0	30.0		0.0	0.0		0.0	15.0		0.0
Storage Lanes	0		1	1		0	0		0	0		1
Taper Length (m)	20.0			20.0			20.0			20.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor			0.96								0.99	0.98
Frt			0.850									0.850
Flt Protected				0.950							0.950	
Satd. Flow (prot)	0	1883	1601	1789	1883	0	0	0	0	0	1789	1601
Flt Permitted				0.083							0.950	
Satd. Flow (perm)	0	1883	1544	156	1883	0	0	0	0	0	1767	1562
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			343									198
Link Speed (k/h)		60			60			60			60	
Link Distance (m)		91.9			95.6			86.4			82.5	
Travel Time (s)		5.5			5.7			5.2			5.0	
Confl. Peds. (#/hr)	5		5	5		5	5		5	5		5
Confl. Bikes (#/hr)			5			5			5			5
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	816	343	214	807	0	0	0	0	166	0	198
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	816	343	214	807	0	0	0	0	0	166	198
Turn Type		NA	Perm	pm+pt	NA					Perm	NA	Perm
Protected Phases		4		3	8						6	
Permitted Phases			4	8						6		6
Detector Phase		4	4	3	8					6	6	6
Switch Phase												
Minimum Initial (s)		8.0	8.0	8.0	8.0					8.0	8.0	8.0
Minimum Split (s)		26.0	26.0	14.0	26.0					26.0	26.0	26.0
Total Split (s)		59.0	59.0	14.0	73.0					27.0	27.0	27.0
Total Split (%)		59.0%	59.0%	14.0%	73.0%					27.0%	27.0%	27.0%
Maximum Green (s)		53.0	53.0	8.0	67.0					21.0	21.0	21.0
Yellow Time (s)		4.0	4.0	4.0	4.0					4.0	4.0	4.0
All-Red Time (s)		2.0	2.0	2.0	2.0					2.0	2.0	2.0
Lost Time Adjust (s)		0.0	0.0	0.0	0.0						0.0	0.0
Total Lost Time (s)		6.0	6.0	6.0	6.0						6.0	6.0
Lead/Lag		Lag	Lag	Lead								
Lead-Lag Optimize?		Yes	Yes	Yes								
Vehicle Extension (s)		3.0	3.0	3.0	3.0					3.0	3.0	3.0
Recall Mode		None	None	None	None					Max	Max	Max
Walk Time (s)		8.0	8.0		8.0					8.0	8.0	8.0
Flash Dont Walk (s)		12.0	12.0		12.0					12.0	12.0	12.0
Pedestrian Calls (#/hr)		5	5		5					5	5	5
Act Effct Green (s)		45.1	45.1	59.2	59.2						21.2	21.2
Actuated g/C Ratio		0.49	0.49	0.64	0.64						0.23	0.23
v/c Ratio		0.89	0.37	0.88	0.67						0.41	0.39

	ᄼ	→	•	•	←	•	•	†	/	>	Ų.	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Control Delay		34.2	2.6	55.2	13.5						36.2	7.4
Queue Delay		0.0	0.0	0.0	0.0						0.0	0.0
Total Delay		34.2	2.6	55.2	13.5						36.2	7.4
LOS		С	Α	Е	В						D	Α
Approach Delay		24.9			22.2						20.5	
Approach LOS		С			С						С	
Queue Length 50th (m)		124.7	0.0	21.6	80.5						26.8	0.0
Queue Length 95th (m)		179.9	12.3	#64.2	116.2						47.9	17.4
Internal Link Dist (m)		67.9			71.6			62.4			58.5	
Turn Bay Length (m)				30.0								
Base Capacity (vph)		1087	1037	242	1375						404	510
Starvation Cap Reductn		0	0	0	0						0	0
Spillback Cap Reductn		0	0	0	0						0	0
Storage Cap Reductn		0	0	0	0						0	0
Reduced v/c Ratio		0.75	0.33	0.88	0.59						0.41	0.39

Area Type: Other

Cycle Length: 100

Actuated Cycle Length: 92.5

Natural Cycle: 90

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.89

Intersection Signal Delay: 23.2

Intersection LOS: C ICU Level of Service E

Intersection Capacity Utilization 82.1%

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 16: Rte 214 & Exit 8 SB Ramps

	۶	→	•	•	←	•	•	†	/	/	↓	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	f.		ሻ		7	ሻ	(î		ሻ	1>	
Traffic Volume (vph)	69	319	69	386	149	110	11	7	102	109	15	46
Future Volume (vph)	69	319	69	386	149	110	11	7	102	109	15	46
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	30.0		0.0	30.0		30.0	15.0		15.0	15.0		0.0
Storage Lanes	1		0	1		1	1		0	1		0
Taper Length (m)	20.0			20.0			20.0			20.0		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.99	0.99		1.00		0.96	0.99	0.96		0.99	0.97	
Frt		0.973				0.850		0.860			0.886	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1789	1821	0	1789	1883	1601	1789	1558	0	1789	1617	0
Flt Permitted	0.654			0.211			0.714			0.681		
Satd. Flow (perm)	1219	1821	0	396	1883	1544	1329	1558	0	1268	1617	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		13				120		111			50	
Link Speed (k/h)		60			60			60			60	
Link Distance (m)		95.7			91.6			86.7			78.0	
Travel Time (s)		5.7			5.5			5.2			4.7	
Confl. Peds. (#/hr)	5		5	5		5	5		5	5		5
Confl. Bikes (#/hr)			5			5			5			5
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	75	347	75	420	162	120	12	8	111	118	16	50
Shared Lane Traffic (%)												
Lane Group Flow (vph)	75	422	0	420	162	120	12	119	0	118	66	0
Turn Type	Perm	NA		pm+pt	NA	Perm	Perm	NA		Perm	NA	
Protected Phases		4		3	8			2			6	
Permitted Phases	4			8		8	2			6		
Detector Phase	4	4		3	8	8	2	2		6	6	
Switch Phase												
Minimum Initial (s)	8.0	8.0		8.0	8.0	8.0	8.0	8.0		8.0	8.0	
Minimum Split (s)	26.0	26.0		14.0	26.0	26.0	26.0	26.0		26.0	26.0	
Total Split (s)	54.0	54.0		22.0	76.0	76.0	30.0	30.0		30.0	30.0	
Total Split (%)	50.9%	50.9%		20.8%	71.7%	71.7%	28.3%	28.3%		28.3%	28.3%	
Maximum Green (s)	48.0	48.0		16.0	70.0	70.0	24.0	24.0		24.0	24.0	
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.0	6.0		6.0	6.0	6.0	6.0	6.0		6.0	6.0	
Lead/Lag	Lag	Lag		Lead								
Lead-Lag Optimize?	Yes	Yes		Yes								
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None	None	Max	Max		Max	Max	
Walk Time (s)	8.0	8.0			8.0	8.0	8.0	8.0		8.0	8.0	
Flash Dont Walk (s)	12.0	12.0			12.0	12.0	12.0	12.0		12.0	12.0	
Pedestrian Calls (#/hr)	5	5			5	5	5	5		5	5	
Act Effct Green (s)	23.5	23.5		44.4	44.4	44.4	24.3	24.3		24.3	24.3	
Actuated g/C Ratio	0.29	0.29		0.55	0.55	0.55	0.30	0.30		0.30	0.30	
v/c Ratio	0.21	0.78		0.89	0.16	0.13	0.03	0.22		0.31	0.13	

	•	→	•	1	•	•	4	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Control Delay	22.6	36.4		36.7	8.9	1.9	24.3	7.4		27.4	11.2	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	22.6	36.4		36.7	8.9	1.9	24.3	7.4		27.4	11.2	
LOS	С	D		D	Α	Α	С	Α		С	В	
Approach Delay		34.3			24.4			9.0			21.6	
Approach LOS		С			С			Α			С	
Queue Length 50th (m)	8.8	58.2		36.7	11.2	0.0	1.3	0.9		14.0	1.7	
Queue Length 95th (m)	18.5	88.8		#88.7	19.4	6.0	5.9	13.7		32.6	11.7	
Internal Link Dist (m)		71.7			67.6			62.7			54.0	
Turn Bay Length (m)	30.0			30.0		30.0	15.0			15.0		
Base Capacity (vph)	732	1098		496	1641	1361	399	545		380	520	
Starvation Cap Reductn	0	0		0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0		0	0	0	0	0		0	0	
Storage Cap Reductn	0	0		0	0	0	0	0		0	0	
Reduced v/c Ratio	0.10	0.38		0.85	0.10	0.09	0.03	0.22		0.31	0.13	

Area Type: Other

Cycle Length: 106

Actuated Cycle Length: 80.8

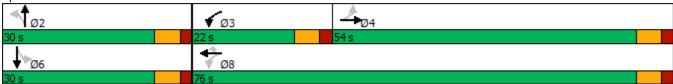
Natural Cycle: 70

Control Type: Semi Act-Uncoord

Maximum v/c Ratio: 0.89

Intersection Signal Delay: 25.9

Intersection LOS: C


Intersection Capacity Utilization 74.1%

ICU Level of Service D

Analysis Period (min) 15

Queue shown is maximum after two cycles.

Splits and Phases: 17: Park Rd & Rte 214

Synchro 11 Light Report East Hants Traffic Study 01/18/2024 Page 2

^{# 95}th percentile volume exceeds capacity, queue may be longer.

	۶	→	•	<	←	4	•	†	<i>></i>	\	↓	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ች	f.		ሻ	†	7	ሻ	1>		*	f)	
Traffic Volume (vph)	94	208	27	174	458	181	56	26	376	337	14	144
Future Volume (vph)	94	208	27	174	458	181	56	26	376	337	14	144
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	30.0	1000	0.0	30.0	1000	30.0	15.0	1000	15.0	15.0	1000	0.0
Storage Lanes	1		0.0	1		1	1		0	1		0.0
Taper Length (m)	20.0			20.0		•	20.0			20.0		•
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.99	1.00		0.99		0.96	0.99	0.97		0.99	0.97	
Frt	0.00	0.983		0.00		0.850	0.00	0.860		0.00	0.863	
Flt Protected	0.950	0.000		0.950		0.000	0.950	0.000		0.950	0.000	
Satd. Flow (prot)	1789	1843	0	1789	1883	1601	1789	1565	0	1789	1572	0
Flt Permitted	0.314			0.275	.000		0.649			0.433		•
Satd. Flow (perm)	588	1843	0	515	1883	1540	1210	1565	0	811	1572	0
Right Turn on Red	000	10.10	Yes	0.10	1000	Yes	1210	1000	Yes	011	1012	Yes
Satd. Flow (RTOR)		5	. 00			101		409	. 00		152	. 00
Link Speed (k/h)		60			60	101		60			60	
Link Distance (m)		95.7			91.6			86.7			78.0	
Travel Time (s)		5.7			5.5			5.2			4.7	
Confl. Peds. (#/hr)	5	0.1	5	5	0.0	5	5	0.2	5	5	7.1	5
Confl. Bikes (#/hr)	0		5	O .		5	U		5	U		5
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	102	226	29	189	498	197	61	28	409	366	15	157
Shared Lane Traffic (%)	102	220	20	100	430	107	01	20	700	000	10	107
Lane Group Flow (vph)	102	255	0	189	498	197	61	437	0	366	172	0
Turn Type	Perm	NA		pm+pt	NA	Perm	Perm	NA	U	Perm	NA	
Protected Phases	1 01111	4		3	8	1 01111	1 01111	2		1 Cilli	6	
Permitted Phases	4	<u> </u>		8	<u> </u>	8	2			6		
Detector Phase	4	4		3	8	8	2	2		6	6	
Switch Phase				,	U	U				· ·	- U	
Minimum Initial (s)	8.0	8.0		8.0	8.0	8.0	8.0	8.0		8.0	8.0	
Minimum Split (s)	26.0	26.0		14.0	26.0	26.0	26.0	26.0		26.0	26.0	
Total Split (s)	28.0	28.0		14.0	42.0	42.0	64.0	64.0		64.0	64.0	
Total Split (%)	26.4%	26.4%		13.2%	39.6%	39.6%	60.4%	60.4%		60.4%	60.4%	
Maximum Green (s)	22.0	22.0		8.0	36.0	36.0	58.0	58.0		58.0	58.0	
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	6.0	6.0		6.0	6.0	6.0	6.0	6.0		6.0	6.0	
Lead/Lag	Lag	Lag		Lead	0.0	0.0	0.0	0.0		0.0	0.0	
Lead-Lag Optimize?	Yes	Yes		Yes								
<u> </u>	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Vehicle Extension (s)												
Recall Mode	None	None		None	None	None	Max	Max		Max	Max	
Walk Time (s)	8.0	8.0			8.0	8.0	8.0	8.0		8.0	8.0	
Flash Dont Walk (s)	12.0	12.0			12.0	12.0	12.0	12.0		12.0	12.0	
Pedestrian Calls (#/hr)	5	5		22.0	5	5	5	5		5	5	
Act Effet Green (s)	19.6	19.6		33.6	33.6	33.6	58.1	58.1		58.1	58.1	
Actuated g/C Ratio	0.19	0.19		0.32	0.32	0.32	0.56	0.56		0.56	0.56	
v/c Ratio	0.92	0.73		0.71	0.82	0.35	0.09	0.41		0.81	0.18	

	•	-	•	•	•	•	•	†	~	-	ţ	4
Lane Group	EBL	EBT	EBR \	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Control Delay	109.9	51.3		43.3	44.3	14.6	11.9	2.9		35.5	3.1	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Delay	109.9	51.3		43.3	44.3	14.6	11.9	2.9		35.5	3.1	
LOS	F	D		D	D	В	В	Α		D	Α	
Approach Delay		68.0			37.5			4.0			25.2	
Approach LOS		Е			D			Α			С	
Queue Length 50th (m)	20.4	47.8		28.6	91.5	13.9	5.7	2.5		59.1	1.8	
Queue Length 95th (m)	#50.8	74.4	#	51.0	#131.9	31.6	12.0	16.3		#117.3	11.1	
Internal Link Dist (m)		71.7			67.6			62.7			54.0	
Turn Bay Length (m)	30.0			30.0		30.0	15.0			15.0		
Base Capacity (vph)	125	395		265	654	601	678	1056		454	947	
Starvation Cap Reductn	0	0		0	0	0	0	0		0	0	
Spillback Cap Reductn	0	0		0	0	0	0	0		0	0	
Storage Cap Reductn	0	0		0	0	0	0	0		0	0	
Reduced v/c Ratio	0.82	0.65		0.71	0.76	0.33	0.09	0.41		0.81	0.18	

Area Type: Other

Cycle Length: 106

Actuated Cycle Length: 103.7

Natural Cycle: 90

Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.92

Intersection Signal Delay: 32.0 Intersection LOS: C
Intersection Capacity Utilization 94.6% ICU Level of Service F

Analysis Period (min) 15

Queue shown is maximum after two cycles.

Splits and Phases: 17: Park Rd & Rte 214

^{# 95}th percentile volume exceeds capacity, queue may be longer.

	۶	→	•	<	←	4	•	†	~	/	↓	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ħβ		ሻ		7	ሻ		7	ሻሻ	f)	
Traffic Volume (vph)	97	304	92	553	130	153	16	7	134	140	15	74
Future Volume (vph)	97	304	92	553	130	153	16	7	134	140	15	74
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	30.0		0.0	0.0		30.0	15.0	,,,,,	30.0	15.0		0.0
Storage Lanes	1		0	1		1	1		1	2		0
Taper Length (m)	20.0			20.0			20.0			20.0		
Lane Util. Factor	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00	0.97	1.00	1.00
Ped Bike Factor	0.99	0.99		0.99		0.96	0.99		0.96	0.98	0.96	
Frt		0.965				0.850			0.850		0.875	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1789	3419	0	1789	1883	1601	1789	1883	1601	3471	1584	0
Flt Permitted	0.667			0.242			0.950			0.950		
Satd. Flow (perm)	1240	3419	0	453	1883	1540	1765	1883	1540	3418	1584	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		30				166			146		80	
Link Speed (k/h)		60			60			60			60	
Link Distance (m)		95.7			91.6			86.7			78.0	
Travel Time (s)		5.7			5.5			5.2			4.7	
Confl. Peds. (#/hr)	5		5	5		5	5		5	5		5
Confl. Bikes (#/hr)			5			5			5			5
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	105	330	100	601	141	166	17	8	146	152	16	80
Shared Lane Traffic (%)												
Lane Group Flow (vph)	105	430	0	601	141	166	17	8	146	152	96	0
Turn Type	Perm	NA		pm+pt	NA	Perm	Split	NA	Perm	Split	NA	
Protected Phases		4		3	8		2	2		6	6	
Permitted Phases	4			8		8			2			
Detector Phase	4	4		3	8	8	2	2	2	6	6	
Switch Phase												
Minimum Initial (s)	8.0	8.0		8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	
Minimum Split (s)	26.0	26.0		14.0	26.0	26.0	16.0	16.0	16.0	26.0	26.0	
Total Split (s)	35.0	35.0		44.0	79.0	79.0	18.0	18.0	18.0	26.0	26.0	
Total Split (%)	28.5%	28.5%		35.8%	64.2%	64.2%	14.6%	14.6%	14.6%	21.1%	21.1%	
Maximum Green (s)	29.0	29.0		38.0	73.0	73.0	12.0	12.0	12.0	20.0	20.0	
Yellow Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0		6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	
Lead/Lag	Lag	Lag		Lead								
Lead-Lag Optimize?	Yes	Yes		Yes								
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None		None	None	None	Max	Max	Max	Max	Max	
Walk Time (s)	8.0	8.0			8.0	8.0				8.0	8.0	
Flash Dont Walk (s)	12.0	12.0			12.0	12.0				12.0	12.0	
Pedestrian Calls (#/hr)	5	5			5	5				5	5	
Act Effct Green (s)	18.4	18.4		56.0	56.0	56.0	12.1	12.1	12.1	20.2	20.2	
Actuated g/C Ratio	0.17	0.17		0.53	0.53	0.53	0.11	0.11	0.11	0.19	0.19	
v/c Ratio	0.49	0.70		0.95	0.14	0.19	0.08	0.04	0.48	0.23	0.26	

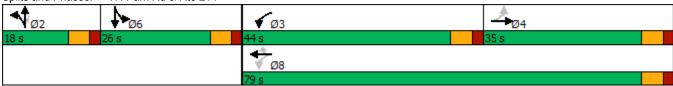
	•	→	→ •	←	•	•	†	-	-	. ↓	4
Lane Group	EBL	EBT	EBR WE	L WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Control Delay	49.1	45.4	49.	1 12.7	2.2	48.1	47.9	13.8	40.2	14.9	
Queue Delay	0.0	0.0	0.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	49.1	45.4	49.	1 12.7	2.2	48.1	47.9	13.8	40.2	14.9	
LOS	D	D		D B	Α	D	D	В	D	В	
Approach Delay		46.1		34.9			18.8			30.4	
Approach LOS		D		С			В			С	
Queue Length 50th (m)	20.1	41.8	95	7 14.2	0.0	3.2	1.5	0.0	14.0	2.8	
Queue Length 95th (m)	38.4	61.0	#163	9 23.5	8.7	10.8	6.6	19.1	26.0	18.0	
Internal Link Dist (m)		71.7		67.6			62.7			54.0	
Turn Bay Length (m)	30.0				30.0	15.0		30.0	15.0		
Base Capacity (vph)	341	962	71	9 1303	1117	203	214	304	658	365	
Starvation Cap Reductn	0	0		0 0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0		0 0	0	0	0	0	0	0	
Storage Cap Reductn	0	0		0 0	0	0	0	0	0	0	
Reduced v/c Ratio	0.31	0.45	8.0	4 0.11	0.15	0.08	0.04	0.48	0.23	0.26	

Area Type: Other

Cycle Length: 123

Actuated Cycle Length: 106.5

Natural Cycle: 95


Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.95

Intersection Signal Delay: 36.0 Intersection LOS: D
Intersection Capacity Utilization 74.6% ICU Level of Service D

Analysis Period (min) 15

Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Bane Group		۶	→	•	•	←	4	4	†	~	/	↓	-√
Lane Configurations	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph)													
Future volume (vph) 139 173 34 221 428 227 76 26 512 387 14 188 deal Flow (vphpi) 1900 1000 10				34									188
Ideal Flow (ryphpi)													
Storage Length (m) 30.0	· · · /												
Storage Lanes													
Taper Length (m)													
Lane Util. Factor 1.00				•			•			•			•
Ped Bike Factor 0.99 0.99 0.99 0.90 0.8			0.95	0.95		1.00	1.00		1.00	1.00		1.00	1.00
Fit				0.00									
Fit Profected 0.950													
Satd. Flow (prot) 1789 3466 0 1789 1883 1601 1789 1883 1601 3471 1559 0 0 0 0 0 0 0 0 0		0.950			0.950			0.950			0.950		
Fit Permitted			3466	0		1883	1601		1883	1601		1559	0
Satd, Flow (perm) Ref March Mes	" ,			-									
Right Turn on Red Yes			3466	0		1883	1542		1883	1565		1559	0
Satd. Flow (RTOR)													
Link Speed (k/h) 60 60 60 60 60 Link Distance (m) 95.7 91.6 86.7 78.0 Travel Time (s) 5.7 5.5 5.5 5.2 4.7 Confl. Peds, (#/hr) 5			22									204	
Link Distance (m) 95.7 91.6 86.7 78.0	,					60			60	•			
Travel Time (s)													
Confi. Peds. (#/hr)	,												
Confil. Bikes (#/hr) 5 40 0.92 <td>. ,</td> <td>5</td> <td>0.7</td> <td>5</td> <td>5</td> <td>0.0</td> <td>5</td> <td>5</td> <td>0.2</td> <td>5</td> <td>5</td> <td></td> <td>5</td>	. ,	5	0.7	5	5	0.0	5	5	0.2	5	5		5
Peak Hour Factor 0.92 0.													
Adj. Flow (vph) 151 188 37 240 465 247 83 28 557 421 15 204 Shared Lane Traffic (%) Lane Group Flow (vph) 151 225 0 240 465 247 83 28 557 421 219 0 Turn Type Perm NA pm+pt NA Perm Split NA Split Split Na 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0		0.92	0.92		0.92	0.92		0.92	0.92		0.92	0.92	
Shared Lane Traffic (%) Lane Group Flow (vph) 151 225 0 240 465 247 83 28 557 421 219 0 Turn Type													
Lane Group Flow (vph)		101	100	0,	2.0	100				001		.0	20 .
Turn Type		151	225	0	240	465	247	83	28	557	421	219	0
Protected Phases 4 3 8 2 2 6 6 Permitted Phases 4 8 8 8 2 2 6 6 Detector Phase 4 4 3 8 8 2 2 2 6 6 Switch Phase Minimum Initial (s) 8.0													
Permitted Phases		1 01111					1 01111	•		1 01111	•		
Detector Phase 4		4	•				8	_	_	2			
Switch Phase Minimum Initial (s) 8.0			4			8		2	2		6	6	
Minimum Initial (s) 8.0 26.0 27.4% 41.4% 42.1% 30.5% 30.5% 30.5% 30.5% 27.4% 27.4% 27.4% 27.4% 27.4% 27.4% 27.4% 27.4% 27.4% 27.4% 27.4% 27.4% 27.4% 27.4% 27.4% 27.4% 27.4% 27.4%		•	•					_	_	_			
Minimum Split (s) 26.0 27.4%<		8.0	8.0		8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	
Total Split (s) 26.0 26.0 14.0 40.0 40.0 29.0 29.0 29.0 26.0 26.0 Total Split (%) 27.4% 27.4% 14.7% 42.1% 42.1% 30.5% 30.5% 30.5% 27.4% 27.4% Maximum Green (s) 20.0 20.0 8.0 34.0 34.0 23.0 23.0 20.0 20.0 20.0 Yellow Time (s) 4.0	. ,												
Total Split (%) 27.4% 27.4% 14.7% 42.1% 30.5% 30.5% 30.5% 27.4% 27.4% Maximum Green (s) 20.0 20.0 8.0 34.0 34.0 23.0 23.0 23.0 20.0 20.0 Yellow Time (s) 4.0	,												
Maximum Green (s) 20.0 20.0 8.0 34.0 34.0 23.0 23.0 23.0 20.0 20.0 20.0 Yellow Time (s) 4.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0													
Yellow Time (s) 4.0 2.0													
All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0													
Lost Time Adjust (s) 0.0 6.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0													
Total Lost Time (s) 6.0 8.0 8.0 8.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 8.0 Max Max Max Max Max Max Max	. ,												
Lead/Lag Lag Lag Lead Lead-Lag Optimize? Yes Yes Yes Vehicle Extension (s) 3.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 9.0 12.0 12.0													
Lead-Lag Optimize? Yes Yes Yes Vehicle Extension (s) 3.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 9.0 9.0 9.0 9.0 9.0 9.0 <						0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Vehicle Extension (s) 3.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 9.0 7.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0													
Recall Mode None None None None None None Max Max Max Max Max Walk Time (s) 8.0 <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td>3.0</td> <td>3.0</td> <td>3.0</td> <td>3.0</td> <td>3.0</td> <td>3.0</td> <td>3.0</td> <td></td>	<u> </u>					3.0	3.0	3.0	3.0	3.0	3.0	3.0	
Walk Time (s) 8.0 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 <td>` ,</td> <td></td>	` ,												
Flash Dont Walk (s) 12.0					110110			TTIO.X	TTT CONT	Wick			
Pedestrian Calls (#/hr) 5 5 5 5 5 Act Effct Green (s) 18.6 18.6 32.6 32.6 23.0 23.0 23.0 20.0 20.0 Actuated g/C Ratio 0.20 0.20 0.35 0.35 0.25 0.25 0.25 0.21 0.21													
Act Effct Green (s) 18.6 18.6 32.6 32.6 32.6 23.0 23.0 23.0 20.0 20.0 Actuated g/C Ratio 0.20 0.20 0.35 0.35 0.25 0.25 0.25 0.21 0.21	. ,												
Actuated g/C Ratio 0.20 0.20 0.35 0.35 0.25 0.25 0.25 0.21 0.21	` ,				32.6			23.0	23.0	23.0			
· ·	. ,												
- ข. าสแบ - บ.๐๐ บ.วะ - บ.บ บ.วา บ.วา บ.วา บ.วา บ.วา บ.วา บ.วา	v/c Ratio	0.88	0.20		0.63	0.71	0.39	0.19	0.25	0.25	0.57	0.44	

	•	→	•	•	←	•	~	†		-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Control Delay	81.5	30.0		31.9	33.4	10.6	30.0	28.3	28.0	36.8	9.0	
Queue Delay	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	81.5	30.0		31.9	33.4	10.6	30.0	28.3	28.0	36.8	9.0	
LOS	F	С		С	С	В	С	С	С	D	Α	
Approach Delay		50.7			27.1			28.3			27.3	
Approach LOS		D			С			С			С	
Queue Length 50th (m)	26.7	16.5		32.2	71.8	11.4	12.2	4.0	38.7	35.9	2.2	
Queue Length 95th (m)	#60.3	26.7		51.8	106.0	29.4	24.1	10.7	#99.8	50.7	20.5	
Internal Link Dist (m)		71.7			67.6			62.7			54.0	
Turn Bay Length (m)	30.0					30.0	15.0		30.0	15.0		
Base Capacity (vph)	185	758		380	684	659	440	462	646	741	493	
Starvation Cap Reductn	0	0		0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0		0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0		0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.82	0.30		0.63	0.68	0.37	0.19	0.06	0.86	0.57	0.44	

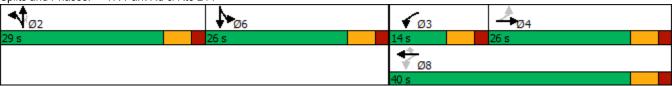
Area Type: Other

Cycle Length: 95

Actuated Cycle Length: 93.6

Natural Cycle: 95

Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.88


Intersection Signal Delay: 30.8 Intersection LOS: C
Intersection Capacity Utilization 73.6% ICU Level of Service D

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 17: Park Rd & Rte 214

	٠	*	•	†	↓	1
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥	LUIT	NDL 1		1	JUIN
Traffic Volume (vph)	T 66	182	42	T 429	453	35
Future Volume (vph)	66	182	42	429	453	35
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0	0.0	15.0	1900	1300	0.0
	1					0.0
Storage Lanes	20.0	0	20.0			U
Taper Length (m)		1.00		1.00	1.00	1.00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.97		1.00		1.00	
Frt	0.901		0.050		0.990	
Flt Protected	0.987	^	0.950	4000	4000	
Satd. Flow (prot)	1626	0	1789	1883	1860	0
Flt Permitted	0.987		0.433			
Satd. Flow (perm)	1621	0	812	1883	1860	0
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)	138				9	
Link Speed (k/h)	60			60	60	
Link Distance (m)	91.3			75.2	69.8	
Travel Time (s)	5.5			4.5	4.2	
Confl. Peds. (#/hr)	5	5	5			5
Confl. Bikes (#/hr)		5				5
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	72	198	46	466	492	38
Shared Lane Traffic (%)	, _	.00				
Lane Group Flow (vph)	270	0	46	466	530	0
Turn Type	Prot	U	Perm	NA	NA	U
Protected Phases	4		1 GIIII	2	6	
Permitted Phases	4		2		U	
Detector Phase	1		2	2	G	
	4		2	2	6	
Switch Phase	0.0		0.0	0.0	0.0	
Minimum Initial (s)	8.0		8.0	8.0	8.0	
Minimum Split (s)	26.0		26.0	26.0	26.0	
Total Split (s)	26.0		66.0	66.0	66.0	
Total Split (%)	28.3%		71.7%	71.7%	71.7%	
Maximum Green (s)	20.0		60.0	60.0	60.0	
Yellow Time (s)	4.0		4.0	4.0	4.0	
All-Red Time (s)	2.0		2.0	2.0	2.0	
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	
Total Lost Time (s)	6.0		6.0	6.0	6.0	
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0		3.0	3.0	3.0	
Recall Mode	None		Max	Max	Max	
Walk Time (s)	8.0		8.0	8.0	8.0	
Flash Dont Walk (s)	12.0		12.0	12.0	12.0	
Pedestrian Calls (#/hr)	5		5	5	5	
Act Effct Green (s)	13.1		60.8	60.8	60.8	
Actuated g/C Ratio	0.15		0.71	0.71	0.71	
v/c Ratio	0.74		0.08	0.35	0.40	

	۶	•	4	†	ļ	4		
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR		
Control Delay	29.3		5.4	6.4	6.8			
Queue Delay	0.0		0.0	0.0	0.0			
Total Delay	29.3		5.4	6.4	6.8			
LOS	С		Α	Α	Α			
Approach Delay	29.3			6.3	6.8			
Approach LOS	С			Α	Α			
Queue Length 50th (m)	20.0		1.9	24.5	28.6			
Queue Length 95th (m)	45.0		6.6	50.7	59.3			
Internal Link Dist (m)	67.3			51.2	45.8			
Turn Bay Length (m)			15.0					
Base Capacity (vph)	484		574	1332	1318			
Starvation Cap Reductn	0		0	0	0			
Spillback Cap Reductn	0		0	0	0			
Storage Cap Reductn	0		0	0	0			
Reduced v/c Ratio	0.56		0.08	0.35	0.40			
Intersection Summary								
Area Type:	Other							
Cycle Length: 92								
Actuated Cycle Length: 86								
Natural Cycle: 55								
Control Type: Semi Act-Uno	coord							
Maximum v/c Ratio: 0.74								
Intersection Signal Delay: 1					tersection			
Intersection Capacity Utiliza	ation 60.4%			IC	U Level c	f Service B		
Analysis Period (min) 15								
Splits and Phases: 18: T	k 2 & Elmwo	od						
↑ ø₂	· · ·						→ _{Ø4}	
66 s							26 s	
↓ ø6								

	٠	*	•	†	↓	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥ EBL	LDIX	NDL 1	NDT) 	JUIN
Traffic Volume (vph)	51	105	160	T 708	537	101
Future Volume (vph)	51	105	160	708	537	101
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0	0.0	15.0	1300	1900	0.0
Storage Lanes	1	0.0	15.0			0.0
Taper Length (m)	20.0	U	20.0			U
	1.00	1.00	1.00	1.00	1.00	1.00
Lane Util. Factor		1.00		1.00	1.00 0.99	1.00
Ped Bike Factor	0.97		1.00			
Frt	0.909		0.050		0.979	
Flt Protected	0.984	^	0.950	4000	4004	
Satd. Flow (prot)	1640	0	1789	1883	1834	0
Flt Permitted	0.984		0.348			
Satd. Flow (perm)	1633	0	653	1883	1834	0
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)	104				21	
Link Speed (k/h)	60			60	60	
Link Distance (m)	91.3			75.2	69.8	
Travel Time (s)	5.5			4.5	4.2	
Confl. Peds. (#/hr)	5	5	5			5
Confl. Bikes (#/hr)		5				5
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	55	114	174	770	584	110
Shared Lane Traffic (%)						
Lane Group Flow (vph)	169	0	174	770	694	0
Turn Type	Prot		Perm	NA	NA	
Protected Phases	4		. 31111	2	6	
Permitted Phases	7		2			
Detector Phase	4		2	2	6	
Switch Phase	4				U	
Minimum Initial (s)	8.0		8.0	8.0	8.0	
. ,						
Minimum Split (s)	26.0		26.0	26.0	26.0	
Total Split (s)	26.0		66.0	66.0	66.0	
Total Split (%)	28.3%		71.7%	71.7%	71.7%	
Maximum Green (s)	20.0		60.0	60.0	60.0	
Yellow Time (s)	4.0		4.0	4.0	4.0	
All-Red Time (s)	2.0		2.0	2.0	2.0	
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	
Total Lost Time (s)	6.0		6.0	6.0	6.0	
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0		3.0	3.0	3.0	
Recall Mode	None		Max	Max	Max	
Walk Time (s)	8.0		8.0	8.0	8.0	
Flash Dont Walk (s)	12.0		12.0	12.0	12.0	
Pedestrian Calls (#/hr)	5		5	5	5	
Act Effct Green (s)	11.1		64.1	64.1	64.1	
Actuated g/C Ratio	0.13		0.73	0.73	0.73	
v/c Ratio	0.57		0.36	0.56	0.51	

	•	•	•	†	↓	4		
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR		
Control Delay	21.6		7.8	8.0	7.2			
Queue Delay	0.0		0.0	0.0	0.0			
Total Delay	21.6		7.8	8.0	7.2			
LOS	С		Α	Α	Α			
Approach Delay	21.6			7.9	7.2			
Approach LOS	С			Α	Α			
Queue Length 50th (m)	9.5		7.4	40.7	33.4			
Queue Length 95th (m)	26.7		26.8	105.4	88.2			
Internal Link Dist (m)	67.3			51.2	45.8			
Turn Bay Length (m)			15.0					
Base Capacity (vph)	457		479	1383	1352			
Starvation Cap Reductn	0		0	0	0			
Spillback Cap Reductn	0		0	0	0			
Storage Cap Reductn	0		0	0	0			
Reduced v/c Ratio	0.37		0.36	0.56	0.51			
Intersection Summary								
	Other							
Cycle Length: 92								
Actuated Cycle Length: 87.3	3							
Natural Cycle: 65								
Control Type: Semi Act-Und	coord							
Maximum v/c Ratio: 0.57								
Intersection Signal Delay: 8					tersection			
Intersection Capacity Utiliza	tion 69.1%			IC	U Level c	f Service C		
Analysis Period (min) 15								
Splits and Phases: 18: Tk	c 2 & Elmwo	ood						
↑ø₂							≯ _{Ø4}	
66 s							26 s	
I							200	
▼ Ø6								

	۶	•	4	†	↓	1
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W		<u> </u>	<u> </u>	1	UDIN
Traffic Volume (vph)	68	182	42	451	497	38
Future Volume (vph)	68	182	42	451	497	38
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0	0.0	15.0	1300	1300	0.0
Storage Lanes	1	0.0	13.0			0.0
Taper Length (m)	20.0	U	20.0			U
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.97	1.00	1.00	1.00	1.00	1.00
Frt	0.902		1.00			
			0.050		0.990	
Flt Protected	0.987	^	0.950	1000	1000	^
Satd. Flow (prot)	1628	0	1789	1883	1860	0
Flt Permitted	0.987		0.401	1000	1000	
Satd. Flow (perm)	1623	0	752	1883	1860	0
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)	134				9	
Link Speed (k/h)	60			60	60	
Link Distance (m)	91.3			75.2	69.8	
Travel Time (s)	5.5			4.5	4.2	
Confl. Peds. (#/hr)	5	5	5			5
Confl. Bikes (#/hr)		5				5
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	74	198	46	490	540	41
Shared Lane Traffic (%)	, ,	.00			3.0	
Lane Group Flow (vph)	272	0	46	490	581	0
Turn Type	Prot	<u> </u>	Perm	NA	NA	<u> </u>
Protected Phases	4		i Gilli	2	6	
Permitted Phases	4		2		U	
Detector Phase	1		2	2	6	
	4				Ö	
Switch Phase	0.0		0.0	0.0	0.0	
Minimum Initial (s)	8.0		8.0	8.0	8.0	
Minimum Split (s)	26.0		26.0	26.0	26.0	
Total Split (s)	26.0		66.0	66.0	66.0	
Total Split (%)	28.3%		71.7%	71.7%	71.7%	
Maximum Green (s)	20.0		60.0	60.0	60.0	
Yellow Time (s)	4.0		4.0	4.0	4.0	
All-Red Time (s)	2.0		2.0	2.0	2.0	
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	
Total Lost Time (s)	6.0		6.0	6.0	6.0	
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0		3.0	3.0	3.0	
Recall Mode	None		Max	Max	Max	
Walk Time (s)	8.0		8.0	8.0	8.0	
Flash Dont Walk (s)	12.0		12.0	12.0	12.0	
,						
Pedestrian Calls (#/hr)	5		5	5	5	
Act Effct Green (s)	13.3		60.8	60.8	60.8	
Actuated g/C Ratio	0.15		0.71	0.71	0.71	
v/c Ratio	0.75		0.09	0.37	0.44	

	۶	•	4	†	↓	4			
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR			
Control Delay	30.2		5.5	6.6	7.3				
Queue Delay	0.0		0.0	0.0	0.0				
Total Delay	30.2		5.5	6.6	7.3				
LOS	С		Α	Α	Α				
Approach Delay	30.2			6.5	7.3				
Approach LOS	С			Α	Α				
Queue Length 50th (m)	21.1		2.0	26.5	33.2				
Queue Length 95th (m)	46.5		6.6	54.1	67.4				
Internal Link Dist (m)	67.3			51.2	45.8				
Turn Bay Length (m)			15.0						
Base Capacity (vph)	481		530	1329	1315				
Starvation Cap Reductn	0		0	0	0				
Spillback Cap Reductn	0		0	0	0				
Storage Cap Reductn	0		0	0	0				
Reduced v/c Ratio	0.57		0.09	0.37	0.44				
Intersection Summary									
Area Type:	Other								
Cycle Length: 92									
Actuated Cycle Length: 86.	1								
Natural Cycle: 55									
Control Type: Semi Act-Und	coord								
Maximum v/c Ratio: 0.75									
Intersection Signal Delay: 1					tersection				
Intersection Capacity Utiliza	ation 60.5%			IC	U Level c	of Service B			
Analysis Period (min) 15									
Splits and Phases: 18: TI	k 2 & Elmwo	ood							
↑ Ø2							→ _@	4	
66 s							26 s	-	
↓ ø6									

	•	•	•	†	↓	1
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W	LUIT	NDL 1		1	JUIN
Traffic Volume (vph)	54	105	160	T 759	572	104
Future Volume (vph)	54 54	105	160	759	572	104
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0	0.0	15.0	1900	1300	0.0
	0.0	0.0	15.0			0.0
Storage Lanes	20.0	U	20.0			U
Taper Length (m)		1.00		1.00	1.00	1.00
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.97		1.00		0.99	
Frt	0.911		0.050		0.979	
Flt Protected	0.983		0.950	4000	4004	•
Satd. Flow (prot)	1643	0	1789	1883	1834	0
Flt Permitted	0.983		0.325			
Satd. Flow (perm)	1636	0	611	1883	1834	0
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)	97				20	
Link Speed (k/h)	60			60	60	
Link Distance (m)	91.3			75.2	69.8	
Travel Time (s)	5.5			4.5	4.2	
Confl. Peds. (#/hr)	5	5	5			5
Confl. Bikes (#/hr)		5				5
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	59	114	174	825	622	113
Shared Lane Traffic (%)		117	11-7	320	JLL	, 10
Lane Group Flow (vph)	173	0	174	825	735	0
Turn Type	Prot	U	Perm	NA	NA	U
Protected Phases	4		i Giiii	2	6	
Permitted Phases	4		2		U	
Detector Phase	1		2	2	G	
	4		2	2	6	
Switch Phase	0.0		0.0	0.0	0.0	
Minimum Initial (s)	8.0		8.0	8.0	8.0	
Minimum Split (s)	26.0		26.0	26.0	26.0	
Total Split (s)	26.0		66.0	66.0	66.0	
Total Split (%)	28.3%		71.7%	71.7%	71.7%	
Maximum Green (s)	20.0		60.0	60.0	60.0	
Yellow Time (s)	4.0		4.0	4.0	4.0	
All-Red Time (s)	2.0		2.0	2.0	2.0	
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	
Total Lost Time (s)	6.0		6.0	6.0	6.0	
Lead/Lag	3.0			J. C		
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0		3.0	3.0	3.0	
Recall Mode	None		Max	Max	Max	
Walk Time (s)	8.0		8.0	8.0	8.0	
Flash Dont Walk (s)	12.0		12.0	12.0	12.0	
Pedestrian Calls (#/hr)	5		5	5	5	
Act Effct Green (s)	11.4		63.9	63.9	63.9	
Actuated g/C Ratio	0.13		0.73	0.73	0.73	
v/c Ratio	0.58		0.39	0.60	0.55	

	۶	•	4	†	ļ	4		
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR		
Control Delay	23.6		8.6	8.7	7.7			
Queue Delay	0.0		0.0	0.0	0.0			
Total Delay	23.6		8.6	8.7	7.7			
LOS	С		Α	Α	Α			
Approach Delay	23.6			8.7	7.7			
Approach LOS	С			Α	Α			
Queue Length 50th (m)	11.1		7.8	47.6	38.3			
Queue Length 95th (m)	28.7		28.2	119.6	97.3			
Internal Link Dist (m)	67.3			51.2	45.8			
Turn Bay Length (m)			15.0					
Base Capacity (vph)	452		447	1378	1348			
Starvation Cap Reductn	0		0	0	0			
Spillback Cap Reductn	0		0	0	0			
Storage Cap Reductn	0		0	0	0			
Reduced v/c Ratio	0.38		0.39	0.60	0.55			
Intersection Summary								
Area Type:	Other							
Cycle Length: 92								
Actuated Cycle Length: 87.	3							
Natural Cycle: 65								
Control Type: Semi Act-Uni	coord							
Maximum v/c Ratio: 0.60	_							
Intersection Signal Delay: 9					tersection			
Intersection Capacity Utiliza	ation 71.2%			IC	U Level c	f Service C		
Analysis Period (min) 15								
Splits and Phases: 18: T	k 2 & Elmwo	od						
↑ ø₂							→ _{Ø4}	
66 s							26 s	
↓ Ø6								

-						
Intersection						
Int Delay, s/veh	2.3					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W	LDIX	ሻ	↑	1	ODIT
Traffic Vol, veh/h	36	66	18	403	711	19
Future Vol, veh/h	36	66	18	403	711	19
Conflicting Peds, #/hr	5	5	5	0	0	5
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None		None
Storage Length	0	-	15	-	_	-
Veh in Median Storage		_	-	0	0	_
Grade, %	0	_	_	0	0	_
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	39	72	20	438	773	21
IVIVIIIL I IOW	33	12	20	700	113	Z 1
_	Minor2		Major1		Major2	
Conflicting Flow All	1272	794	799	0	-	0
Stage 1	789	-	-	-	-	-
Stage 2	483	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	_	-	_
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	185	388	824	_	-	_
Stage 1	448	-	-	-	-	-
Stage 2	620	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	179	384	820	-	-	-
Mov Cap-2 Maneuver	179	-	-	-	-	-
Stage 1	435	-	-	-	-	-
Stage 2	617	-	-	-	_	-
J						
Annroach	EB		NB		SB	
Approach						
HCM Control Delay, s	26.9		0.4		0	
HCM LOS	D					
Minor Lane/Major Mvn	nt	NBL	NBT I	EBLn1	SBT	SBR
Capacity (veh/h)		820	-		_	-
HCM Lane V/C Ratio		0.024	_	0.406	-	-
HCM Control Delay (s		9.5	-		-	-
HCM Lane LOS		Α	-	D	-	-
HCM 95th %tile Q(veh)	0.1	_	1.9	-	_

Interception						
Intersection Int Delay, s/veh	4.6					
•						
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	N/F		<u>ነ</u>		Þ	
Traffic Vol, veh/h	43	40	62	908	648	37
Future Vol, veh/h	43	40	62	908	648	37
Conflicting Peds, #/hr	5	5	5	0	0	5
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	15	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	47	43	67	987	704	40
Maiau/Minau	N 4: O		14-:1		A-:O	
	Minor2		Major1		/lajor2	
Conflicting Flow All	1855	734	749	0	-	0
Stage 1	729	-	-	-	-	-
Stage 2	1126	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy		3.318		-	-	-
Pot Cap-1 Maneuver	81	420	860	-	-	-
Stage 1	477	-	-	-	-	-
Stage 2	310	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	74	416	856	-	-	-
Mov Cap-2 Maneuver	74	-	-	-	-	-
Stage 1	437	_	_	-	-	-
Stage 2	308	_	_	-	_	-
	300					
A	ED		NID		00	
Approach	EB		NB		SB	
HCM Control Delay, s	89.4		0.6		0	
HCM LOS	F					
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)	-	856	-		-	
HCM Lane V/C Ratio		0.079		0.733	_	
HCM Control Delay (s)		9.6	-	89.4	<u>-</u>	-
					=	
HCM Lane LOS	١	A	-	F	-	-
HCM 95th %tile Q(veh)	0.3	-	4.1	-	-

Intersection						
Int Delay, s/veh	2.5					
		EBB	ND	NET	ODT	ODD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y		<u>ነ</u>		f)	
Traffic Vol, veh/h	38	66	18	423	751	22
Future Vol, veh/h	38	66	18	423	751	22
Conflicting Peds, #/hr	5	5	5	0	0	5
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	15	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	41	72	20	460	816	24
	Minor2		Major1		/lajor2	
Conflicting Flow All	1338	838	845	0	-	0
Stage 1	833	-	-	-	-	-
Stage 2	505	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	_	_	_	_	_
Follow-up Hdwy	3.518	3.318	2.218	_	_	_
Pot Cap-1 Maneuver	169	366	792	_	_	_
Stage 1	427	-		_	_	_
Stage 2	606	_	_	_	_	
Platoon blocked, %	000	_	_	_	_	_
Mov Cap-1 Maneuver	163	363	788	-	-	-
			100	_	-	_
Mov Cap-2 Maneuver	163	-	-	-	-	-
Stage 1	414	-	-	-	-	-
Stage 2	603	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	30.6		0.4		0	
			0.4		U	
HCM LOS	D					
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		788	-	251	_	_
HCM Lane V/C Ratio		0.025		0.45	_	
HCM Control Delay (s)		9.7		30.6	_	_
HCM Lane LOS		9.7 A		30.0 D	-	-
	1		-			
HCM 95th %tile Q(veh)	0.1	-	2.2	-	-

Intersection						
Int Delay, s/veh	6.5					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	₩.	LDK	NDL Š	IND I		אטט
		40			♣	40
Traffic Vol, veh/h	46		62	958	679	
Future Vol, veh/h	46	40	62	958	679	40
Conflicting Peds, #/hr	5 Ctor	5 Cton	5	0	0	5
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	15	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	50	43	67	1041	738	43
Major/Minor	Minor2		Major1		/lajor2	
			Major1			^
Conflicting Flow All	1945	770	786	0	-	0
Stage 1	765	-	-	-	-	-
Stage 2	1180		-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	71	401	833	-	-	-
Stage 1	459	-	-	-	-	-
Stage 2	292	-	-	-	-	-
Platoon blocked, %				-	_	-
Mov Cap-1 Maneuver	65	397	829	_	_	_
Mov Cap-2 Maneuver	65	-	-	_	_	_
Stage 1	420	_	_	_	_	_
Stage 2	291				_	_
Staye 2	231	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	131.5		0.6		0	
HCM LOS	F					
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		829	-	106	-	-
HCM Lane V/C Ratio		0.081	-	0.882	-	-
HCM Control Delay (s))	9.7	-	131.5	-	-
HCM Lane LOS		Α	-	F	-	-
HCM 95th %tile Q(veh)	0.3	_	5.2	_	-
	,					

Intersection						
Int Delay, s/veh	0.5					
		EBB	ND	NET	ODT	ODD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			ની	f)	
Traffic Vol, veh/h	5	24	4	415	772	5
Future Vol, veh/h	5	24	4	415	772	5
Conflicting Peds, #/hr	5	5	5	0	0	5
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	5	26	4	451	839	5
					- 500	
	Minor2		Major1	N	Major2	
Conflicting Flow All	1311	852	849	0	-	0
Stage 1	847	-	-	-	-	-
Stage 2	464	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	_	_	-	_	_
Critical Hdwy Stg 2	5.42	_	_	_	_	_
Follow-up Hdwy	3.518	3.318	2.218	_	_	_
Pot Cap-1 Maneuver	175	359	789	_	_	_
Stage 1	420	-	100	_		
Stage 2	633		_	_	-	_
	033	-	-	-	-	-
Platoon blocked, %	470	250	705	-	-	-
Mov Cap-1 Maneuver	172	356	785	-	-	-
Mov Cap-2 Maneuver	172	-	-	-	-	-
Stage 1	415	-	-	-	-	-
Stage 2	630	-	-	-	-	-
Annroach	EB		NB		SB	
Approach						
HCM Control Delay, s	18.4		0.1		0	
HCM LOS	С					
Minor Lane/Major Mvm	nt	NBL	NRT	EBLn1	SBT	SBR
Capacity (veh/h)		785	-			<u> </u>
HCM Lane V/C Ratio		0.006		0.105	_	
		9.6			-	-
HCM Control Delay (s)			0	18.4	-	-
HCM Lane LOS		A	Α	С	-	-
HCM 95th %tile Q(veh)	0	-	0.3	-	-

Intersection						
Int Delay, s/veh	0.4					
•						
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			4	₽	
Traffic Vol, veh/h	9	8	15	962	677	10
Future Vol, veh/h	9	8	15	962	677	10
Conflicting Peds, #/hr	5	5	5	0	0	5
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	10	9	16	1046	736	11
N.A ' /N.A.'	N 4" O				4 - ' 0	
	Minor2		Major1		/lajor2	
Conflicting Flow All	1830	752	752	0	-	0
Stage 1	747	-	-	-	-	-
Stage 2	1083	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy		3.318		-	-	-
Pot Cap-1 Maneuver	84	410	858	-	-	-
Stage 1	468	-	-	-	-	-
Stage 2	325	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	79	406	854	-	-	-
Mov Cap-2 Maneuver	79	-	-	-	_	-
Stage 1	445	_	-	-	_	-
Stage 2	323	_	-	-	_	-
	323					
			, LE		-	
Approach	EB		NB		SB	
HCM Control Delay, s	38.1		0.1		0	
HCM LOS	Е					
Minor Lane/Major Mvn	nt	NBL	NRT	EBLn1	SBT	SBR
		854	-			ODIT
Capacity (veh/h)					-	
HCM Cantral Dalay (a)		0.019		0.145	-	-
HCM Control Delay (s)		9.3	0	38.1	-	-
HCM Lane LOS	\	A	Α	E	-	-
HCM 95th %tile Q(veh)	0.1	-	0.5	-	-

Intersection						
Int Delay, s/veh	0.5					
•						
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			र्स	Þ	
Traffic Vol, veh/h	7	24	4	435	811	8
Future Vol, veh/h	7	24	4	435	811	8
Conflicting Peds, #/hr	5	5	5	0	0	5
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	8	26	4	473	882	9
N.A. ' /N.A.	N. 0					
	Minor2		Major1		/lajor2	
Conflicting Flow All	1378	897	896	0	-	0
Stage 1	892	-	-	-	-	-
Stage 2	486	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	160	339	757	-	-	-
Stage 1	400	-	-	-	-	-
Stage 2	618	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	157	336	754	-	-	-
Mov Cap-2 Maneuver	157	-	-	_	_	-
Stage 1	395	_	-	-	-	_
Stage 2	615	_	_	_	_	_
Jugo 2	310					
Approach	EB		NB		SB	
HCM Control Delay, s	20.4		0.1		0	
HCM LOS	С					
Minor Lane/Major Mvn	nt	NBL	NRT	EBLn1	SBT	SBR
						אומט
Capacity (veh/h)		754	-		-	-
HCM Cantrol Dalay (a)	\	0.006		0.126	-	-
HCM Control Delay (s))	9.8	0	20.4	-	-
HCM Lane LOS	\	A	Α	C	-	-
HCM 95th %tile Q(veh	1)	0	-	0.4	-	-

Interception						
Intersection Int Delay, s/veh	0.6					
•						
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	, M			र्स	Þ	
Traffic Vol, veh/h	12	8	15	1008	708	13
Future Vol, veh/h	12	8	15	1008	708	13
Conflicting Peds, #/hr	5	5	5	0	0	5
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	13	9	16	1096	770	14
			. •			
	Minor2		Major1		Major2	
Conflicting Flow All	1915	787	789	0	-	0
Stage 1	782	-	-	-	-	-
Stage 2	1133	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	74	392	831	-	-	-
Stage 1	451	-	_	-	_	-
Stage 2	307	_	_	_	_	_
Platoon blocked, %	301			_	_	_
Mov Cap-1 Maneuver	70	388	827	_	_	_
Mov Cap-1 Maneuver	70	-	- 021	_	_	_
Stage 1	427	_	_	_	-	_
_	305		-		-	
Stage 2	303	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	48.5		0.1		0	
HCM LOS	Е					
Minard and Maria	-1	NDI	NDT	EDL 4	ODT	ODD
Minor Lane/Major Mvmt		NBL		EBLn1	SBT	SBR
Canacity (yoh/h)		827	-		-	-
Capacity (veh/h)						
HCM Lane V/C Ratio		0.02		0.209	-	
HCM Lane V/C Ratio HCM Control Delay (s))	0.02 9.4	0	48.5	-	-
HCM Lane V/C Ratio		0.02				- -

	•	•	4	†	ļ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
		EDK 7				JDK
Lane Configurations	120		72	262	}	75
Traffic Volume (vph)	139	294	73	263	745	75 75
Future Volume (vph)	139	294	73	263	745	75
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0	15.0	15.0			0.0
Storage Lanes	1	1	1			0
Taper Length (m)	20.0		20.0			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.99	0.96			1.00	
Frt		0.850			0.988	
Flt Protected	0.950		0.950			
Satd. Flow (prot)	1789	1601	1789	1883	1855	0
Flt Permitted	0.950		0.229			
Satd. Flow (perm)	1769	1537	431	1883	1855	0
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)		210			11	
Link Speed (k/h)	60			60	60	
Link Distance (m)	91.0			79.2	46.3	
Travel Time (s)	5.5			4.8	2.8	
Confl. Peds. (#/hr)	5.5	5	5	4.0	2.0	5
	5		3			
Confl. Bikes (#/hr)	0.00	5	0.00	0.00	0.00	5
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	151	320	79	286	810	82
Shared Lane Traffic (%)						
Lane Group Flow (vph)	151	320	79	286	892	0
Turn Type	Prot	Perm	Perm	NA	NA	
Protected Phases	4			2	6	
Permitted Phases		4	2			
Detector Phase	4	4	2	2	6	
Switch Phase			_	_		
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	
Minimum Split (s)	26.0	26.0	26.0	26.0	26.0	
Total Split (s)	26.0	26.0	66.0	66.0	66.0	
,						
Total Split (%)	28.3%	28.3%	71.7%	71.7%	71.7%	
Maximum Green (s)	20.0	20.0	60.0	60.0	60.0	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0	
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None	Max	Max	Max	
Walk Time (s)	8.0	8.0	8.0	8.0	8.0	
Flash Dont Walk (s)	12.0	12.0	12.0	12.0	12.0	
Pedestrian Calls (#/hr)	5	5	5	5	5	
, ,						
Act Effet Green (s)	13.2	13.2	60.1	60.1	60.1	
Actuated g/C Ratio	0.15	0.15	0.70	0.70	0.70	
v/c Ratio	0.55	0.77	0.26	0.22	0.68	

	•	•	•	†	ļ	4		
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR		
Control Delay	40.6	25.5	8.4	5.5	11.4			
Queue Delay	0.0	0.0	0.0	0.0	0.0			
Total Delay	40.6	25.5	8.4	5.5	11.4			
LOS	D	С	Α	Α	В			
Approach Delay	30.3			6.1	11.4			
Approach LOS	С			Α	В			
Queue Length 50th (m)	23.0	16.5	3.7	13.0	65.4			
Queue Length 95th (m)	40.3	44.5	13.1	29.2	140.2			
Internal Link Dist (m)	67.0			55.2	22.3			
Turn Bay Length (m)		15.0	15.0					
Base Capacity (vph)	420	521	303	1326	1309			
Starvation Cap Reductn	0	0	0	0	0			
Spillback Cap Reductn	0	0	0	0	0			
Storage Cap Reductn	0	0	0	0	0			
Reduced v/c Ratio	0.36	0.61	0.26	0.22	0.68			
Intersection Summary								
Area Type:	Other							
Cycle Length: 92								
Actuated Cycle Length: 85.4	ļ							
Natural Cycle: 70								
Control Type: Semi Act-Unc	oord							
Maximum v/c Ratio: 0.77								
Intersection Signal Delay: 15					itersection			
Intersection Capacity Utiliza	tion 74.6%			IC	CU Level c	f Service D		
Analysis Period (min) 15								
Splits and Phases: 21: Tk	2 & Old Er	nfield						
							≯ a.	
Ø2							√ Ø4	
66 s							26 s	
▼ Ø6								

	ၨ	•	4	†	ļ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	T CDL	EDK	NDL			ODIX
Traffic Volume (vph)	130	147	316	↑ 872	1 → 469	169
Future Volume (vph)	130	147	316	872	469	169
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0	15.0	15.0	1300	1300	0.0
Storage Lanes	1	15.0	15.0			0.0
Taper Length (m)	20.0		20.0			U
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.99	0.96	1.00	1.00	0.99	1.00
Frt	0.99	0.850	1.00		0.99	
FIt Protected	0.950	0.000	0.950		0.304	
	1789	1601	1789	1883	1800	0
Satd. Flow (prot)		1001		1003	1000	U
Flt Permitted	0.950	1544	0.331	1000	1000	0
Satd. Flow (perm)	1771	1541	622	1883	1800	0
Right Turn on Red		Yes			1.1	Yes
Satd. Flow (RTOR)	00	160		00	41	
Link Speed (k/h)	60			60	60	
Link Distance (m)	91.0			79.2	46.3	
Travel Time (s)	5.5			4.8	2.8	
Confl. Peds. (#/hr)	5	5	5			5
Confl. Bikes (#/hr)		5				5
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	141	160	343	948	510	184
Shared Lane Traffic (%)						
Lane Group Flow (vph)	141	160	343	948	694	0
Turn Type	Prot	Perm	Perm	NA	NA	
Protected Phases	4			2	6	
Permitted Phases		4	2			
Detector Phase	4	4	2	2	6	
Switch Phase						
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	
Minimum Split (s)	26.0	26.0	26.0	26.0	26.0	
Total Split (s)	26.0	26.0	56.0	56.0	56.0	
Total Split (%)	31.7%	31.7%	68.3%	68.3%	68.3%	
Maximum Green (s)	20.0	20.0	50.0	50.0	50.0	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0	
Lead/Lag	0.0	0.0	0.0	0.0	0.0	
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None	Max	Max	Max	
Walk Time (s)	8.0	8.0	8.0	8.0	8.0	
Flash Dont Walk (s)	12.0	12.0	12.0	12.0	12.0	
Pedestrian Calls (#/hr)	5	5	5	5	5	
, ,	12.2	12.2	52.5	52.5	52.5	
Act Effct Green (s)						
Actuated g/C Ratio	0.16	0.16	0.68	0.68	0.68	
v/c Ratio	0.50	0.42	0.81	0.74	0.56	

	۶	•	4	†	ļ	✓	
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	
Control Delay	34.5	8.4	28.6	13.5	8.7		
Queue Delay	0.0	0.0	0.0	0.0	0.0		
Total Delay	34.5	8.4	28.6	13.5	8.7		
LOS	С	Α	С	В	Α		
Approach Delay	20.6			17.6	8.7		
Approach LOS	С			В	Α		
Queue Length 50th (m)	18.1	0.0	27.5	68.6	37.4		
Queue Length 95th (m)	33.3	13.7	#99.3	#167.7	89.8		
Internal Link Dist (m)	67.0			55.2	22.3		
Turn Bay Length (m)		15.0	15.0				
Base Capacity (vph)	468	521	425	1288	1244		
Starvation Cap Reductn	0	0	0	0	0		
Spillback Cap Reductn	0	0	0	0	0		
Storage Cap Reductn	0	0	0	0	0		
Reduced v/c Ratio	0.30	0.31	0.81	0.74	0.56		
Intersection Summary							
Area Type:	Other						
Cycle Length: 82							
Actuated Cycle Length: 76.	7						
Natural Cycle: 90							
Control Type: Semi Act-Une	coord						
Maximum v/c Ratio: 0.81							
Intersection Signal Delay: 1					tersection		
Intersection Capacity Utiliza	ation 76.3%			IC	U Level c	of Service D	
Analysis Period (min) 15							
# 95th percentile volume			ieue may	be longer			
Queue shown is maximu	um after two	cycles.					
Splits and Phases: 21: T	k 2 & Old Er	nfield					
≪ ♠	& 0.4)	
™ Ø2						№ Ø4	

East Hants Traffic Study Synchro 11 Light Report Page 2 01/18/2024

	•	•	4	†	ļ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	T LDL	LDIN.	NDL Š		1	אומט
Traffic Volume (vph)	149	341	89	T 273	777	82
Future Volume (vph)	149	341	89	273	777	82
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0	15.0	15.0	1300	1300	0.0
Storage Lanes	1	15.0	15.0			0.0
Taper Length (m)	20.0	I	20.0			U
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.99	0.96	1.00	1.00	1.00	1.00
Frt	0.33	0.850			0.987	
Flt Protected	0.950	0.000	0.950		0.301	
Satd. Flow (prot)	1789	1601	1789	1883	1853	0
Flt Permitted	0.950	1001	0.195	1003	1000	U
		1537	367	1883	1853	0
Satd. Flow (perm)	1769		307	1003	1003	
Right Turn on Red		Yes			10	Yes
Satd. Flow (RTOR)	00	196		00	12	
Link Speed (k/h)	60			60	60	
Link Distance (m)	91.0			79.2	46.3	
Travel Time (s)	5.5	_	_	4.8	2.8	_
Confl. Peds. (#/hr)	5	5	5			5
Confl. Bikes (#/hr)		5	•	•		5
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	162	371	97	297	845	89
Shared Lane Traffic (%)						
Lane Group Flow (vph)	162	371	97	297	934	0
Turn Type	Prot	Perm	Perm	NA	NA	
Protected Phases	4			2	6	
Permitted Phases		4	2			
Detector Phase	4	4	2	2	6	
Switch Phase						
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	
Minimum Split (s)	26.0	26.0	26.0	26.0	26.0	
Total Split (s)	26.0	26.0	66.0	66.0	66.0	
Total Split (%)	28.3%	28.3%	71.7%	71.7%	71.7%	
Maximum Green (s)	20.0	20.0	60.0	60.0	60.0	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0	
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None	Max	Max	Max	
Walk Time (s)	8.0	8.0	8.0	8.0	8.0	
Flash Dont Walk (s)	12.0	12.0	12.0	12.0	12.0	
Pedestrian Calls (#/hr)	5	5	5	5	5	
Act Effct Green (s)	15.5	15.5	60.2	60.2	60.2	
	0.18	0.18	0.69	0.69	0.69	
Actuated g/C Ratio						
v/c Ratio	0.51	0.86	0.38	0.23	0.73	

	٠	*	4	†	+	✓	
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	
Control Delay	38.3	36.0	12.7	6.3	13.9		
Queue Delay	0.0	0.0	0.0	0.0	0.0		
Total Delay	38.3	36.0	12.7	6.3	13.9		
LOS	D	D	В	Α	В		
Approach Delay	36.7			7.9	13.9		
Approach LOS	D			Α	В		
Queue Length 50th (m)	24.8	28.9	6.5	17.5	91.6		
Queue Length 95th (m)	43.2	#70.1	19.0	30.3	154.6		
Internal Link Dist (m)	67.0			55.2	22.3		
Turn Bay Length (m)		15.0	15.0				
Base Capacity (vph)	409	502	252	1292	1275		
Starvation Cap Reductn	0	0	0	0	0		
Spillback Cap Reductn					0		
Storage Cap Reductn	•	0	0	0	0		
Reduced v/c Ratio	0.40	0.74	0.38	0.23	0.73		
Intersection Summary							
7 1	Other						
Cycle Length: 92							
Actuated Cycle Length: 87.7	7						
Natural Cycle: 75							
Control Type: Semi Act-Und	coord						
Maximum v/c Ratio: 0.86	0.0					1.00 B	
Intersection Signal Delay: 19					tersection		
Intersection Capacity Utiliza	tion //.6%			IC	U Level o	f Service D	
Analysis Period (min) 15					_		
# 95th percentile volume 6			eue may	be longe	ſ <u>.</u>		
Queue shown is maximu	m aπer two	cycles.					
Splits and Phases: 21: Tk	2 & Old E	nfield					
↑ ø₂							

	•	•	•	†		4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ	7	inde in		<u> </u>	ODIN
Traffic Volume (vph)	140	181	372	908	485	183
Future Volume (vph)	140	181	372	908	485	183
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0	15.0	15.0	1300	1300	0.0
Storage Lanes	1	13.0	15.0			0.0
Taper Length (m)	20.0		20.0			U
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.99	0.96	1.00	1.00	0.99	1.00
Frt	0.55	0.850	1.00		0.99	
Fit Protected	0.950	0.000	0.950		0.303	
	1789	1601	1789	1883	1796	0
Satd. Flow (prot)		1001		1003	1/90	U
Flt Permitted	0.950	1505	0.326	1000	1700	0
Satd. Flow (perm)	1767	1535	612	1883	1796	0
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)		173			42	
Link Speed (k/h)	60			60	60	
Link Distance (m)	91.0			79.2	46.3	
Travel Time (s)	5.5			4.8	2.8	
Confl. Peds. (#/hr)	5	5	5			5
Confl. Bikes (#/hr)		5				5
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	152	197	404	987	527	199
Shared Lane Traffic (%)						
Lane Group Flow (vph)	152	197	404	987	726	0
Turn Type	Prot	Perm	Perm	NA	NA	
Protected Phases	4			2	6	
Permitted Phases		4	2			
Detector Phase	4	4	2	2	6	
Switch Phase						
Minimum Initial (s)	8.0	8.0	8.0	8.0	8.0	
Minimum Split (s)	26.0	26.0	26.0	26.0	26.0	
Total Split (s)	26.0	26.0	74.0	74.0	74.0	
Total Split (%)	26.0%	26.0%	74.0%	74.0%	74.0%	
Maximum Green (s)	20.0	20.070	68.0	68.0	68.0	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.0	6.0	6.0	
. ,	0.0	0.0	0.0	0.0	0.0	
Lead/Lag						
Lead-Lag Optimize?	2.0	2.0	2.0	2.0	2.0	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	
Recall Mode	None	None	Max	Max	Max	
Walk Time (s)	8.0	8.0	8.0	8.0	8.0	
Flash Dont Walk (s)	12.0	12.0	12.0	12.0	12.0	
Pedestrian Calls (#/hr)	5	5	5	5	5	
Act Effct Green (s)	13.4	13.4	68.7	68.7	68.7	
Actuated g/C Ratio	0.14	0.14	0.73	0.73	0.73	
v/c Ratio	0.60	0.54	0.91	0.72	0.55	

	۶	•	4	†	ļ	✓		
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR		
Control Delay	47.4	13.7	39.5	11.9	7.9			
Queue Delay	0.0	0.0	0.0	0.0	0.0			
Total Delay	47.4	13.7	39.5	11.9	7.9			
LOS	D	В	D	В	Α			
Approach Delay	28.4			20.0	7.9			
Approach LOS	С			В	Α			
Queue Length 50th (m)	26.0	3.8	48.1	83.9	45.5			
Queue Length 95th (m)	44.8	22.4	#135.4	168.6	92.1			
Internal Link Dist (m)	67.0			55.2	22.3			
Turn Bay Length (m)		15.0	15.0					
Base Capacity (vph)	380	462	446	1373	1321			
Starvation Cap Reductn	0	0	0	0	0			
Spillback Cap Reductn	0	0	0	0	0			
Storage Cap Reductn	0	0	0	0	0			
Reduced v/c Ratio	0.40	0.43	0.91	0.72	0.55			
Intersection Summary								
Area Type:	Other							
Cycle Length: 100								
Actuated Cycle Length: 94.	.1							
Natural Cycle: 100								
Control Type: Semi Act-Une	coord							
Maximum v/c Ratio: 0.91								
Intersection Signal Delay: 1	17.6			In	tersection	LOS: B		
Intersection Capacity Utiliza	ation 81.5%			IC	U Level o	f Service D		
Analysis Period (min) 15								
# 95th percentile volume	exceeds ca	pacity, q	ueue may	be longe	r.			
Queue shown is maximu	um after two	cycles.						
Splits and Phases: 21: T	k 2 & Old Eı	nfield						
	K Z & Old LI	meiu						
Tø2							√ ø4	

ROAD NETWORK - OPTION 1 Roundabouts

#9 - Trunk 2 / Lantz Connector Rd

					I	AM Vo	ls							F	M Vo	ls		
	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity
								E	Existing Geometr	y - 20	23 Basel	ine						
Leg WB		0.0	0.5	3.39	0.01	Α					0.0	0.5	4.11	0.03	Α			
Leg SB	D1	0.3	1.3	2.66	0.24	Α	2.37		277 %	D2	0.2	0.5	2.43	0.17	Α	2.35		238 %
Leg EB	וטו	0.1	0.5	1.98	0.07	Α	2.31	Α	[Leg SB]	D2	0.2	0.5	2.26	0.19	Α	2.30	A	[Leg WB]
Leg NB		0.1	0.5	1.92	0.09	Α					0.2	0.5	2.20	0.15	Α			
								E	xisting Geometry	- 203	3 Total C	pt 1						
Leg WB		0.0	0.5	3.98	0.01	Α					0.1	0.5	7.71	0.05	Α			
Leg SB	D3	1.6	2.8	5.27	0.61	Α	4.14		57 %	D4	0.8	1.5	3.65	0.43	Α	3.82		50 %
Leg EB	D3	0.2	0.5	2.39	0.19	Α	4.14	Α	[Leg SB]	[Leg SB]	1.1	1.4	4.00	0.52	Α	3.82	A	[Leg WB]
Leg NB		0.2	0.5	2.20	0.16	Α					0.5	1.9	3.50	0.32	Α			
								E	xisting Geometry	- 204	3 Total C	pt 1						
Leg WB		0.0	0.5	4.33	0.01	Α					0.1	0.5	13.67	0.09	В			
Leg SB	D5	4.1	18.4	10.48	0.81	В	7.60		20 %		1.3	1.9	4.85	0.57	Α			17 %
Leg EB	D9	0.3	1.4	2.68	0.26	Α	7.00	Α	[Leg SB]	D6	2.2	4.9	6.33	0.69	Α	5.60	A	[Leg WB]
Leg NB		0.2	0.5	2.38	0.18	Α					0.8	1.5	4.93	0.45	Α			

#10 - Lantz Connector Rd / Shaw Dr

					A	M Vo	ls			PM Vols								
	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity
								E	kisting Geometry	- 203	3 Total C)pt 1						
Leg WB		1.3	1.5	5.45	0.56	Α			41 %		0.5	2.1	3.33	0.35	Α			47 %
Leg EB	D3	0.3	0.8	2.20	0.21	Α	4.08	Α		D4	1.6	3.0	4.92	0.63	Α	4.64	Α	
Leg NB		0.3	1.0	2.99	0.21	Α			[Leg WB]	[Leg WB]		0.6	2.1	5.77	0.36	Α		
								Ex	kisting Geometry	- 204	3 Total C)pt 1						
Leg WB		6.0	32.4	19.19	0.87	С			6 %		1.1	1.5	5.01	0.52	Α			12 %
Leg EB	D5	0.4	1.5	2.40	0.27	Α	11.60	В		D6	5.6	29.6	12.67	0.86	В	10.51	В	
Leg NB		0.4	1.5	3.58	0.29	Α		[Leg WB]	1.5	3.0	12.14	0.61	В			[Leg EB]		

#11 - Lantz Connector Rd / Exit 8A NB Ramps

					A	M Vo	ls							P	M Vo	ls		
	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity
								E	xisting Geometr	y - 20	23 Basel	ine						
Leg WB		0.2	0.5	3.58	0.16	Α			481 %		0.1	0.5	3.34	0.11	Α			797 %
Leg EB	D1	0.1	0.5	3.14	0.05	Α	3.41	Α		D2	0.1	0.5	3.18	0.06	Α	3.18	Α	
Leg NB		0.0	0.5	3.08	0.00	0 X	[Leg WB]		0.0	0.5	3.10	0.00	Α			[Leg WB]		
								Ex	cisting Geometry	- 203	3 Total O	pt 1						
Leg WB		2.2	5.5	9.83	0.69	Α			30 % D4 0		1.0	1.5	6.41	0.51	Α			78 %
Leg EB	D3	0.2	0.5	3.62	0.17	Α	7.77	Α		0.7	1.5	5.15	0.42	Α	5.28	Α		
Leg NB		0.0	0.5	3.46	0.04	Α			[Leg WB]		0.1	0.5	4.42	0.07	Α			[Leg WB]
								Ex	cisting Geometry	- 204	3 Total O	pt 1						
Leg WB		16.4	74.3	56.20	1.00	F			-5 %		3.1	15.0	14.80	0.77	В			17 %
Leg EB	D5	0.4	1.4	4.13	0.28	Α	34.17	D		D6	1.8	3.1	8.30	0.64	Α	9.85	Α	
Leg NB		0.1	0.5	4.02	0.11	Α			[Leg WB] 0.3	0.3	1.4	6.89	0.25	A			[Leg WB]	

#12 - Lantz Connector Rd / Exit 8A SB Ramps

					I	AM Vo	ls							F	M Vo	ls		
	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity
								E	xisting Geometr	y - 20	23 Basel	line						
Leg WB		0.2	0.5	3.57	0.16	Α			488 %		0.1	0.5	3.34	0.11	Α			687 %
Leg SB	D1	0.1	0.5	3.47	0.05	Α	3.55	A		D2	0.1	0.5	3.39	0.06	Α	3.38	Α	
Leg EB		0.0	~1	0.00	0.00	Α			[Leg WB]		0.0	~1	0.00	0.00	Α			[Leg SB]
								Ex	cisting Geometry	- 203	3 Total C	pt 1						
Leg WB		2.2	5.7	9.67	0.70	Α		37 %	Α		1.1	1.5	6.33	0.53	Α			40 %
Leg SB	D3	0.3	1.4	6.39	0.24	Α	8.88	A		D4	1.1	1.5	9.01	0.53	Α	7.47	Α	
Leg EB		0.1	0.5	7.05	0.06	Α			[Leg WB]		0.1	0.5	6.93	0.10	Α			[Leg SB]
								Ex	isting Geometry	- 204	3 Total C	pt 1						
Leg WB		15.4	74.0	46.99	0.98	Ε			-3 %		3.5	16.7	13.49	0.79	В			-1 %
Leg SB	D5	0.7	2.4	10.64	0.40	В	36.00	E		D6 6.5	6.5	30.1	37.65	0.90	E	23.26	С	
Leg EB		0.4	1.6	15.03	0.31	С					0.8	2.7	17.30	0.45	С			[Leg SB]

#21 - Trunk 2 / Old Enfield Rd

					A	M Vo	ls			PM Vols								
	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity
								F	uture Geometry	- 203	3 Total O	pt 1						
Leg SB		0.8	1.5	3.70	0.45	Α			72 %		0.5	1.9	3.28	0.32	Α			51 %
Leg EB	D3	0.3	1.3	7.25	0.23	Α	4.35	A		D4	0.2	0.5	5.46	0.18	Α	4.49	Α	
Leg NB		0.2	0.5	2.18	0.18	Α			[Leg EB]		1.7	3.6	4.90	0.64	Α			[Leg NB]
	Future Geometry - 2043 Total Opt 1																	
Leg SB		0.9	1.5	3.88	0.48	Α			64 %		0.5	2.0	3.46	0.34	Α			40 %
Leg EB	D5	0.3	1.5	7.70	0.26	Α	4.63	A		D6	0.2	1.0	5.63	0.19	Α	5.05	Α	
Leg NB		0.2	0.5	2.23	0.20	Α			[Leg EB]		2.2	5.1	5.73	0.69	Α			[Leg NB]
								F	uture Geometry	- 205	3 Total O	pt 2						
Leg SB		1.1	1.5	4.30	0.52	Α			56 %		0.6	1.9	4.24	0.39	Α			16 %
Leg EB	D7	0.4	1.4	8.25	0.28	Α	5.23	5.23 A		D8	0.3	1.2	5.84	0.21	Α	8.34	Α	
Leg NB		0.3	1.3	2.36	0.24	Α			[Leg EB]	5.1	25.1	10.94	0.85	В			[Leg NB]	

Junctions 10

ARCADY 10 - Roundabout Module

Version: 10.0.4.1693 © Copyright TRL Software Limited, 2021

For sales and distribution information, program advice and maintenance, contact TRL Software: +44 (0)1344 379777 software@trl.co.uk trlsoftware.com The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: Arcady_9_LantzTk2.j10

Path: C:\Users\cope\\OneDrive\\Desktop\\GRIFFIN\\Projects\2023\2323 - East Hants Traffic Study\\Analysis\\Opt 1 - Existing

Roads\Arcady

Report generation date: 3/28/2024 10:28:26 AM

«Existing Geometry - 2043 Total Opt 1, PM Vols

»Intersection Network

»Legs

»Traffic Demand

»Origin-Destination Data

»Vehicle Mix

»Results

Summary of intersection performance

					-	AM V	ols							P	PM Vo	ols		
	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity
								Existing	Geometi	y - 2	023 Ba	seline						
Leg WB		0.0	0.5	3.39	0.01	Α					0.0	0.5	4.11	0.03	Α			
Leg SB	D1	D1 0.3 0.1 0.1	1.3	2.66	0.24	Α	2.37	A	277 %	D2	0.2	0.5	2.43	0.17	Α	2.35	A	238 %
Leg EB	יטן	0.1	0.5	1.98	0.07	Α	2.31	_ ^	[Leg SB]	02	0.2	0.5	2.26	0.19	Α	2.33	_ ^	[Leg WB]
Leg NB		0.1	0.5	1.92	0.09	Α					0.2	0.5	2.20	0.15	Α			
		Existing Geometry - 2033 Total Opt 1																
Leg WB		0.0	0.5	3.98	0.01	Α					0.1	0.5	7.71	0.05	Α			
Leg SB	D3	1.6	2.8	5.27	0.61	Α	4.14	A	57 %	D4	0.8	1.5	3.65	0.43	Α	3.82	A	50 %
Leg EB	03	0.2	0.5	2.39	0.19	Α	4.14	_ ^	[Leg SB]	54	1.1	1.4	4.00	0.52	Α	3.02	_ ^	[Leg WB]
Leg NB		0.2	0.5	2.20	0.16	Α					0.5	1.9	3.50	0.32	Α			
								Existing 6	Seometry	- 20	43 Tot	al Opt	1					
Leg WB		0.0	0.5	4.33	0.01	Α					0.1	0.5	13.67	0.09	В			
Leg SB	D5	4.1	18.4	10.48	0.81	В	7.60	A [Leg SB]	20 %	D6	1.3	1.9	4.85	0.57	Α	5.60	_	17 %
Leg EB	פט	0.3	1.4	2.68	0.26	Α	7.60			ا ا	2.2	4.9	6.33	0.69	Α	3.60	A	[Leg WB]
Leg NB		0.2	0.5	2.36	0.18	Α				0.8	1.5	4.93	0.45	Α				

There are warnings associated with one or more model runs - see the 'Data Errors and Warnings' tables for each Analysis or Demand Set.

Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle. Intersection LOS and Intersection Delay are demand-weighted averages. Network Residual Capacity indicates the amount by which network flow could be increased before a user-definable threshold (see Analysis Options) is met.

File summary

File Description

Title	East Hants Traffic Study
Location	MEH - Trunk 2
Site number	9
Date	3/25/2024
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	
Analyst	SURFACEPRO7\copel
Description	

Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units
m	kph	Veh	Veh	perHour	s	-Min	perMin

Analysis Options

Vehicle length (m)	Calculate Queue Percentiles	Calculate detailed queueing delay	Show lane queues in feet / metres	Show all PICADY stream intercepts	Calculate residual capacity	Residual capacity criteria type	V/C Ratio Threshold	Average Delay threshold (s)	Queue threshold (PCE)	Use iterations with HCM roundabouts	Max number of iterations for roundabouts
5.75	✓				✓	Delay	0.85	36.00	20.00		500

Analysis Set Details

ID	Name	Description	Include in report	Network flow scaling factor (%)	Network capacity scaling factor (%)
A 1	Existing Geometry	Two lane entries	✓	100.000	100.000

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically
D6	2043 Total Opt 1	PM Vols	PHF	00:00	01:00	15	✓

Existing Geometry - 2043 Total Opt 1, PM Vols

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Pedestrian Crossing	Leg WB - Pedestrian crossing	Pedestrian crossing uses default flow of 0. Is this correct?
Warning	Pedestrian Crossing	Leg SB - Pedestrian crossing	Pedestrian crossing uses default flow of 0. Is this correct?
Warning	Pedestrian Crossing	Leg EB - Pedestrian crossing	Pedestrian crossing uses default flow of 0. Is this correct?
Warning	Pedestrian Crossing	Leg NB - Pedestrian crossing	Pedestrian crossing uses default flow of 0. Is this correct?
Warning	Queue variations	Analysis Options	Queue percentiles may be unreliable if the mean queue in any time segment is very low or very high.

Intersection Network

Intersections

Intersection	Name	Intersection type	Use circulating lanes	Leg order	Intersection Delay (s)	Intersection LOS
9	LantzConn&Tk2	Standard Roundabout		WB, SB, EB, NB	5.60	Α

Intersection Network

Driving side	Lighting	Network residual capacity (%)	First leg reaching threshold	Network delay (s)	Network LOS
Right	Normal/unknown	17	Leg WB	5.60	Α

Legs

Legs

Leg	Name	Description	No yield line
WB	ClayWB		
SB	Tk2SB		
EB	LantzEB		
NB	Tk2NB		

Roundabout Geometry

Leg	V - Approach road half- width (m)	E - Entry width (m)	I' - Effective flare length (m)	R - Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Entry only	Exit only
WB	3.50	4.00	30.0	30.0	50.0	20.0		
SB	3.50	7.00	30.0	30.0	50.0	20.0		
EB	7.00	7.00	0.0	30.0	50.0	20.0		
NB	7.00	7.00	0.0	30.0	50.0	20.0		

Unsignalled Pedestrian Crossing Crossings

		,						
Leg	Space between crossing and intersection entry (Unsignalled Pedestrian Crossing) (PCE)	Vehicles queueing on exit (Unsignalled Pedestrian Crossing) (PCE)	Central Refuge	Crossing data type	Crossing length (entry side) (m)	Crossing time (entry side) (s)	Crossing length (exit side) (m)	Crossing time (exit side) (s)
WB	1.00	1.00	✓	Distance	4.00	2.86	4.00	2.86
SB	1.00	1.00	✓	Distance	7.00	5.00	7.00	5.00
ЕВ	1.00	1.00	✓	Distance	7.00	5.00	4.00	2.86
NB	1.00	1.00	✓	Distance	7.00	5.00	4.00	2.86

Slope / Intercept / Capacity

Roundabout Slope and Intercept used in model

toundabout oropo una intercept					
Leg	Final slope	Final intercept (PCE/hr)			
WB	0.541	1266			
SB	0.666	1926			
EB	0.723	2229			
NB	0.723	2229			

The slope and intercept shown above include any corrections and adjustments.

Traffic Demand

Vehicle mix varies over turn	Vehicle mix varies over entry	Vehicle mix source	PCE Factor for a Truck (PCE)
✓	✓	Truck Percentages	2.00

Demand overview (Traffic)

Leg	Linked leg	Profile type	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (%)
WB		PHF	✓	24	100.000
SB		PHF	✓	907	100.000
ЕВ		PHF	✓	1178	100.000
NB		PHF	✓	547	100.000

Peak Hour Factor Data (Traffic)

Leg	Hourly volume (Veh/hr)	Peak hour factor	Peak time segment
WB	24	0.92	SecondQuarter
SB	907	0.92	SecondQuarter
EB	1178	0.92	SecondQuarter
NB	547	0.92	SecondQuarter

Demand overview (Pedestrians)

Leg Profile type		Average pedestrian flow (Ped/hr)
WB [PHF]		0.00
SB	[PHF]	0.00
EB	[PHF]	0.00
NB	[PHF]	0.00

Peak Hour Factor Data (Pedestrians)

Leg	Hourly volume (Ped/hr)	Peak hour factor	Peak time segment
WB	0.00	1.00	SecondQuarter
SB	0.00	1.00	SecondQuarter
EB	0.00	1.00	SecondQuarter
NB	0.00	1.00	SecondQuarter

Origin-Destination Data

Demand (Veh/hr)

	То					
		WB	SB	EB	NB	
	WB	0	6	13	5	
From	SB	1	0	555	351	
	EB	3	1017	0	158	
	NB	2	412	133	0	

Vehicle Mix

Truck Percentages

	То					
		WB	SB	EB	NB	
	WB	5	5	5	5	
From	SB	5	5	5	5	
	EB	5	5	5	5	
	NB	5	5	5	5	

Results

Results Summary for whole modelled period

Leg	Max V/C Ratio	Max Delay (s)	Max Queue (Veh)	Max 95th percentile Queue (Veh)	Max LOS	Average Demand (Veh/hr)	Total Intersection Arrivals (Veh)
WB	0.09	13.67	0.1	0.5	В	24	24
SB	0.57	4.85	1.3	1.9	Α	907	907
EB	0.69	6.33	2.2	4.9	Α	1178	1178
NB	0.45	4.93	0.8	1.5	А	547	547

Main Results for each time segment

00:00 - 00:15

Leg	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Circulating flow (Veh/hr)	Pedestrian demand (Ped/hr)	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
WB	23	6	1464	0.00	413	0.055	22	6	0.0	0.1	9.205	Α
SB	854	214	142	0.00	1740	0.491	851	1345	0.0	1.0	4.030	Α
EB	1110	277	335	0.00	1881	0.590	1104	657	0.0	1.4	4.602	Α
NB	515	129	957	0.00	1431	0.360	513	482	0.0	0.6	3.913	Α

00:15 - 00:30

Leg	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Circulating flow (Veh/hr)	Pedestrian demand (Ped/hr)	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
WB	26	7	1694	0.00	289	0.090	26	7	0.1	0.1	13.673	В
SB	986	246	164	0.00	1725	0.571	984	1556	1.0	1.3	4.848	Α
EB	1280	320	387	0.00	1843	0.695	1277	761	1.4	2.2	6.328	Α
NB	595	149	1107	0.00	1322	0.450	594	558	0.6	0.8	4.932	Α

00:30 - 00:45

Leg	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Circulating flow (Veh/hr)	Pedestrian demand (Ped/hr)	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
WB	25	6	1609	0.00	335	0.074	25	6	0.1	0.1	11.599	В
SB	933	233	156	0.00	1731	0.539	934	1478	1.3	1.2	4.519	Α
EB	1212	303	368	0.00	1857	0.653	1213	722	2.2	1.9	5.606	Α
NB	563	141	1052	0.00	1362	0.413	563	529	0.8	0.7	4.509	Α

00:45 - 01:00

Leg	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Circulating flow (Veh/hr)	Pedestrian demand (Ped/hr)	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
WB	23	6	1474	0.00	408	0.055	23	6	0.1	0.1	9.337	Α
SB	854	214	142	0.00	1740	0.491	855	1354	1.2	1.0	4.074	Α
EB	1110	277	337	0.00	1880	0.590	1112	661	1.9	1.5	4.700	Α
NB	515	129	963	0.00	1426	0.361	516	485	0.7	0.6	3.958	Α

Queue Variation Results for each time segment

00:00 - 00:15

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
WB	0.06	0.03	0.25	0.45	0.48			N/A	N/A
SB	0.96	0.09	0.90	1.55	1.89			N/A	N/A
EB	1.42	0.06	0.74	3.35	4.89			N/A	N/A
NB	0.56	0.08	0.79	1.36	1.43			N/A	N/A

00:15 - 00:30

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
WB	0.10	0.03	0.26	0.47	0.50			N/A	N/A
SB	1.32	0.03	0.26	1.32	1.32			N/A	N/A
EB	2.23	0.03	0.27	2.23	2.23			N/A	N/A
NB	0.81	0.03	0.25	0.81	0.81			N/A	N/A

00:30 - 00:45

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
WB	0.08	0.03	0.25	0.45	0.48			N/A	N/A
SB	1.18	0.03	0.26	1.18	1.18			N/A	N/A
EB	1.91	0.03	0.26	1.91	1.91			N/A	N/A
NB	0.71	0.03	0.27	0.71	1.08			N/A	N/A

00:45 - 01:00

•••									
Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
WB	0.06	0.00	0.00	0.06	0.06			N/A	N/A
SB	0.97	0.40	1.01	1.38	1.38			N/A	N/A
EB	1.46	0.10	1.14	2.81	3.74			N/A	N/A
NB	0.57	0.55	1.00	1.40	1.45			N/A	N/A

Junctions 10

ARCADY 10 - Roundabout Module

Version: 10.0.4.1693 © Copyright TRL Software Limited, 2021

For sales and distribution information, program advice and maintenance, contact TRL Software: +44 (0)1344 379777 software@trl.co.uk trlsoftware.com

The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: Arcady_10_LantzShawDr.j10

Path: C:\Users\copel\OneDrive\Desktop\GRIFFIN\Projects\2023\2323 - East Hants Traffic Study\Analysis\Opt 1 - Existing

Roads\Arcady

Report generation date: 3/28/2024 10:31:01 AM

«Existing Geometry - 2043 Total Opt 1, PM Vols

»Intersection Network

»Legs

»Traffic Demand

»Origin-Destination Data

»Vehicle Mix

»Results

Summary of intersection performance

					-	AM V	ols							F	PM Vo	ols			
	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity	
								Existing 0	Geometry	- 20	33 Tota	al Opt	1						
Leg WB		1.3	1.5	5.45	0.56	Α			41 %		0.5	2.1	3.33	0.35	Α			47 %	
Leg EB	D3	0.3	8.0	2.20	0.21	Α	4.08	A			D4	1.6	3.0	4.92	0.63	Α	4.64	A	
Leg NB		0.3	1.0	2.99	0.21	Α			[Leg WB]		0.6	2.1	5.77	0.36	Α			[Leg EB]	
								Existing 0	Geometry	- 20	43 Tota	al Opt	1						
Leg WB		6.0	32.4	19.19	0.87	С			6 %		1.1	1.5	5.01	0.52	Α			12 %	
Leg EB	D5	0.4	1.5	2.40	0.27	Α	11.60	В		D6	5.6	29.6	12.67	0.86	В	10.51	В		
Leg NB		0.4	1.5	3.56	0.29	Α					1.5	3.0	12.14	0.61	В			[Leg EB]	

There are warnings associated with one or more model runs - see the 'Data Errors and Warnings' tables for each Analysis or Demand Set.

Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle. Intersection LOS and Intersection Delay are demand-weighted averages. Network Residual Capacity indicates the amount by which network flow could be increased before a user-definable threshold (see Analysis Options) is met.

File summary

File Description

Title	East Hants Traffic Study
Location	MEH - Trunk 2
Site number	10
Date	3/25/2024
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	
Analyst	SURFACEPRO7\copel
Description	

Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units
m	kph	Veh	Veh	perHour	s	-Min	perMin

Analysis Options

Vehicle length (m)	Calculate Queue Percentiles	Calculate detailed queueing delay	Show lane queues in feet / metres	Show all PICADY stream intercepts	Calculate residual capacity	Residual capacity criteria type	V/C Ratio Threshold	Average Delay threshold (s)	Queue threshold (PCE)	Use iterations with HCM roundabouts	Max number of iterations for roundabouts	
5.75	✓				✓	Delay	0.85	36.00	20.00		500	

Analysis Set Details

H	Name	Description	Include in report	Network flow scaling factor (%)	Network capacity scaling factor (%)	
Α	1 Existing Geometry	Two lane entries	✓	100.000	100.000	

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically
D6	2043 Total Opt 1	PM Vols	PHF	00:00	01:00	15	✓

Existing Geometry - 2043 Total Opt 1, PM Vols

Data Errors and Warnings

Severity	Area	Item	Description
Last Run	Last Run	Leg WB - Capacity	Pedestrian Crossing causes blocking on previous leg due to traffic queing to leave the intersection in 4 timesegment(s).
Last Run	Last Run	Leg NB - Capacity	Pedestrian Crossing causes blocking on previous leg due to traffic queing to leave the intersection in 4 timesegment(s).
Warning	Queue variations	Analysis Options	Queue percentiles may be unreliable if the mean queue in any time segment is very low or very high.

Intersection Network

Intersections

Intersection	Name	Intersection type	Use circulating lanes	Leg order	Intersection Delay (s)	Intersection LOS
10	LantzConn&ShawDr	Standard Roundabout		WB, EB, NB	10.51	В

Intersection Network

Driving side	Lighting	Network residual capacity (%)	First leg reaching threshold	Network delay (s)	Network LOS
Right	Normal/unknown	12	Leg EB	10.51	В

Legs

Legs

Leg	Name	Description	No yield line
WB	LantzWB		
EB	LantzEB		
NB	ShawNB		

Roundabout Geometry

Leg	V - Approach road half- width (m)	E - Entry width (m)	l' - Effective flare length (m)	R - Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Entry only	Exit only
WB	7.00	7.00	0.0	30.0	50.0	20.0		
EB	7.00	7.00	0.0	30.0	50.0	20.0		
NB	3.50	7.00	30.0	30.0	50.0	20.0		

Unsignalled Pedestrian Crossing Crossings

Leg	Space between crossing and intersection entry (Unsignalled Pedestrian Crossing) (PCE)	Vehicles queueing on exit (Unsignalled Pedestrian Crossing) (PCE)	Central Refuge	Crossing data type	Crossing length (entry side) (m)	Crossing time (entry side) (s)	Crossing length (exit side) (m)	Crossing time (exit side) (s)
WB	1.00	1.00	✓	Distance	7.00	5.00	4.00	2.86
ЕВ	1.00	1.00	✓	Distance	7.00	5.00	4.00	2.86
NB	1.00	1.00	✓	Distance	4.00	2.86	4.00	2.86

Slope / Intercept / Capacity

Roundabout Slope and Intercept used in model

Leg	Final slope	Final intercept (PCE/hr)			
WB	0.723	2229			
EB	0.723	2229			
NB	0.666	1926			

The slope and intercept shown above include any corrections and adjustments.

Traffic Demand

Vehicle mix varies over turn	Vehicle mix varies over entry	Vehicle mix source	PCE Factor for a Truck (PCE)
✓	✓	Truck Percentages	2.00

Demand overview (Traffic)

Leg	Linked leg	Profile type	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (%)		
WB		PHF	✓	702	100.000		
EB		PHF	✓	1464	100.000		
NB		PHF	✓	423	100.000		

Peak Hour Factor Data (Traffic)

Leg	Hourly volume (Veh/hr)	Peak hour factor	Peak time segment
WB	702	0.92	SecondQuarter
EB	1464	0.92	SecondQuarter
NB	423	0.92	SecondQuarter

Demand overview (Pedestrians)

Leg	Profile type	Average pedestrian flow (Ped/hr)
WB	[PHF]	5.00
EB	[PHF]	5.00
NB	[PHF]	5.00

Peak Hour Factor Data (Pedestrians)

Leg	Hourly volume (Ped/hr)	Peak hour factor	Peak time segment
WB	5.00	1.00	SecondQuarter
EB	5.00	1.00	SecondQuarter
NB	5.00	1.00	SecondQuarter

Origin-Destination Data

Demand (Veh/hr)

		То								
		WB	EB	NB						
From	WB	0	549	153						
	EB	1116	0	348						
	NB	62	361	0						

Vehicle Mix

Truck Percentages

	То								
		WB	EB	NB					
Fram	WB	5	5	5					
From	EB	5	5	5					
	NB	5	5	5					

Results

Results Summary for whole modelled period

	into Gairmany		ioniou portou				
Leg	Max V/C Ratio	Max Delay (s)	Max Queue (Veh)	Max 95th percentile Queue (Veh)	Max LOS	Average Demand (Veh/hr)	Total Intersection Arrivals (Veh)
WB	0.52	5.01	1.1	1.5	Α	702	702
EB	0.86	12.67	5.6	29.6	В	1464	1464
NB	0.61	12.14	1.5	3.0	В	423	423

Main Results for each time segment

00:00 - 00:15

Leg	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Circulating flow (Veh/hr)	Pedestrian demand (Ped/hr)	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
WB	661	165	337	5.00	1573	0.421	658	1101	0.0	0.7	3.926	Α
EB	1379	345	144	5.00	1907	0.723	1369	852	0.0	2.5	6.568	Α
NB	398	100	1044	5.00	881	0.453	395	469	0.0	0.8	7.369	Α

00:15 - 00:30

••••												
Leg	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Circulating flow (Veh/hr)	Pedestrian demand (Ped/hr)	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
WB	763	191	390	5.00	1479	0.516	762	1271	0.7	1.1	5.012	A
EB	1591	398	166	5.00	1852	0.859	1579	986	2.5	5.6	12.672	В
NB	460	115	1204	5.00	751	0.613	457	541	0.8	1.5	12.142	В

00:	30 - 00:45						
							ĺ

Leg	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Circulating flow (Veh/hr)	Pedestrian demand (Ped/hr)	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
WB	722	181	372	5.00	1512	0.478	723	1216	1.1	0.9	4.569	Α
EB	1506	377	158	5.00	1872	0.805	1511	938	5.6	4.3	10.141	В
NB	435	109	1152	5.00	792	0.550	436	517	1.5	1.2	10.170	В

00:45 - 01:00

Leg	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Circulating flow (Veh/hr)	Pedestrian demand (Ped/hr)	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
WB	661	165	341	5.00	1567	0.422	662	1115	0.9	0.7	3.983	A
EB	1379	345	144	5.00	1904	0.724	1386	859	4.3	2.7	7.026	Α
NB	398	100	1056	5.00	870	0.458	400	474	1.2	0.9	7.685	Α

Queue Variation Results for each time segment

00:00 - 00:15

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
WB	0.72	0.10	0.85	1.39	1.45			N/A	N/A
EB	2.54	0.05	0.49	6.98	11.46			N/A	N/A
NB	0.81	0.09	0.86	1.41	1.41		N/A		N/A

00:15 - 00:30

Leg	Mean (Veh)			Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker	
WB	1.05	0.03	0.26	1.05	1.05			N/A	N/A
EB	5.57	0.03	0.34	10.25	29.63		N/A		N/A
NB	1.53	0.03	0.27	1.53	3.05			N/A	N/A

00:30 - 00:45

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
WB	0.92	0.03	0.26	0.92	0.92			N/A	N/A
EB	4.32	0.03	0.27	4.32	4.72			N/A	N/A
NB	1.25	0.03	0.27	1.25	1.42			N/A	N/A

00:45 - 01:00

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 Percentile (Veh) message		Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
WB	0.74	0.48	0.97	1.39	1.45			N/A	N/A
EB	2.69	0.04	0.43	7.45	13.28			N/A	N/A
NB	0.86	0.07	0.79	1.40	1.82			N/A	N/A

Junctions 10

ARCADY 10 - Roundabout Module

Version: 10.0.4.1693 © Copyright TRL Software Limited, 2021

For sales and distribution information, program advice and maintenance, contact TRL Software: +44 (0)1344 379777 software@trl.co.uk trlsoftware.com

The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: Arcady_11_LantzHwy102NB.j10
Path: C:\Users\copel\OneDrive\Desktop\GRIFFIN\Projects\2023\2323 - East Hants Traffic Study\Analysis\Opt 1 - Existing

Report generation date: 3/28/2024 10:33:23 AM

«Existing Geometry - 2043 Total Opt 1, PM Vols

- »Intersection Network
- »Legs
- »Traffic Demand
- »Origin-Destination Data
- »Vehicle Mix
- »Results

Summary of intersection performance

	AM Vols								PM Vols									
					-	AIVI V	DIS			FIVI VOIS								
	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity
								Existing	Geometr	y - 2	023 Ba	seline						
Leg WB		0.2	0.5	3.58	0.16	Α			481 %		0.1	0.5	3.34	0.11	Α			797 %
Leg EB	D1	0.1	0.5	3.14	0.05	Α	3.41	A	[Leg WB]	D2	0.1	0.5	3.18	0.06	Α	3.18	A	
Leg NB		0.0	0.5	3.08	0.00	Α					0.0	0.5	3.10	0.00	Α			[Leg WB]
								Existing (Geometry	- 20	33 Tot	al Opt	1					
Leg WB		2.2	5.5	9.83	0.69	Α			36 %		1.0	1.5	6.41	0.51	Α			78 %
Leg EB	D3	0.2	0.5	3.62	0.17	Α	7.77	A		D4	0.7	1.5	5.15	0.42	Α	5.28	A	
Leg NB		0.0	0.5	3.46	0.04	Α			[Leg WB]		0.1	0.5	4.42	0.07	Α			[Leg WB]
								Existing (Geometry	- 20	43 Tot	al Opt	1					
Leg WB		16.4	74.3	56.20	1.00	F			-5 %		3.1	15.0	14.80	0.77	В		Α	17 %
Leg EB	3 D5	0.4	1.4	4.13	0.28	Α	34.17	17 D		D6	1.8	3.1	8.30	0.64	Α	9.85		
Leg NB		0.1	0.5	4.02	0.11	Α			[Leg WB]		0.3	1.4	6.89	0.25	Α			[Leg WB]

There are warnings associated with one or more model runs - see the 'Data Errors and Warnings' tables for each Analysis or Demand Set.

Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle. Intersection LOS and Intersection Delay are demand-weighted averages. Network Residual Capacity indicates the amount by which network flow could be increased before a user-definable threshold (see Analysis Options) is met.

File summary

File Description

Title	East Hants Traffic Study
Location	MEH - Trunk 2
Site number	11
Date	3/25/2024
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	
Analyst	SURFACEPRO7\copel
Description	

Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units	
m	kph	Veh	Veh	perHour	s	-Min	perMin	

Analysis Options

-	Tildiy Si	Options										
	Vehicle length (m)	Calculate Queue Percentiles	Calculate detailed queueing delay	Show lane queues in feet / metres	Show all PICADY stream intercepts	Calculate residual capacity	Residual capacity criteria type	V/C Ratio Threshold	Average Delay threshold (s)	Queue threshold (PCE)	Use iterations with HCM roundabouts	Max number of iterations for roundabouts
	5.75	✓				✓	Delay	0.85	36.00	20.00		500

Analysis Set Details

ID	Name	Description	Include in report	Network flow scaling factor (%)	Network capacity scaling factor (%)
A1	Existing Geometry	Single lane entries	✓	100.000	100.000

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically
D6	2043 Total Opt 1	PM Vols	PHF	00:00	01:00	15	✓

Existing Geometry - 2043 Total Opt 1, PM Vols

Data Errors and Warnings

Severity Area Item		Item	Description
Last Run	Last Run	Leg SB - Capacity	Pedestrian Crossing causes blocking on previous leg due to traffic queing to leave the intersection in 4 timesegment(s).
Warning	Queue variations	Analysis Options	Queue percentiles may be unreliable if the mean queue in any time segment is very low or very high.

Intersection Network

Intersections

Intersection	Name	Intersection type	Use circulating lanes Leg order		Intersection Delay (s) Intersection LO	
11	LantzConn&Hwy102NB	Standard Roundabout		WB, SB, EB, NB	9.85	Α

Intersection Network

Driving side	Lighting	Network residual capacity (%)	First leg reaching threshold	Network delay (s)	Network LOS	
Right	Normal/unknown	17	Leg WB	9.85	Α	

Legs

Legs

Leg Name		Description	No yield line
WB LantzWB			
SB OnRampSB			
EB LantzEB			
NB	OffRampNB		

Roundabout Geometry

Leg	V - Approach road half- width (m)	E - Entry width (m)	l' - Effective flare length (m)	R - Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Entry only	Exit only
WB	3.50	4.00	30.0	30.0	45.0	20.0		
SB								✓
EB	3.50	4.00	30.0	30.0	45.0	20.0		
NB	3.50	4.00	30.0	30.0	45.0	20.0	✓	

Bypass

Leg	Leg has bypass	Bypass utilisation (%)
WB	✓	100
SB		
EB		
NB	✓	100

Unsignalled Pedestrian Crossing Crossings

Leg	Space between crossing and intersection entry (Unsignalled Pedestrian Crossing) (PCE)	Vehicles queueing on exit (Unsignalled Pedestrian Crossing) (PCE)	Central Refuge	Crossing data type	Crossing length (entry side) (m)	Crossing time (entry side) (s)	Crossing length (exit side) (m)	Crossing time (exit side) (s)
WB	1.00	1.00	✓	Distance	4.00	2.86	4.00	2.86
SB		1.00	✓	Distance			4.00	2.86
ЕВ	1.00	1.00	✓	Distance	4.00	2.86	4.00	2.86
NB	1.00	1.00	✓	Distance	4.00	2.86	4.00	2.86

Slope / Intercept / Capacity

Roundabout Slope and Intercept used in model

Leg	Final slope	Final intercept (PCE/hr)			
WB	0.558	1266			
SB					
EB	0.558	1266			
NR	0.558	1266			

The slope and intercept shown above include any corrections and adjustments.

Traffic Demand

Vehicle mix varies over turn	Vehicle mix varies over entry	Vehicle mix source	PCE Factor for a Truck (PCE)
✓	✓	Truck Percentages	2.00

Demand overview (Traffic)

Leg	Linked leg	Profile type	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (%)
WB		PHF	✓	910	100.000
SB					
EB		PHF	✓	714	100.000
NB		PHF	✓	1148	100.000

Peak Hour Factor Data (Traffic)

Leg	Hourly volume (Veh/hr)	Peak hour factor	Peak time segment
WB	910	0.92	SecondQuarter
SB			
EB	714	0.92	SecondQuarter
NB	1148	0.92	SecondQuarter

Demand overview (Pedestrians)

Leg	Profile type	Average pedestrian flow (Ped/hr)
WB	[PHF]	5.00
SB	[PHF]	5.00
EB	[PHF]	5.00
NB	[PHF]	5.00

Peak Hour Factor Data (Pedestrians)

Leg	Hourly volume (Ped/hr)	Peak hour factor	Peak time segment
WB	5.00	1.00	SecondQuarter
SB	5.00	1.00	SecondQuarter
EB	5.00	1.00	SecondQuarter
NB	5.00	1.00	SecondQuarter

Origin-Destination Data

Demand (Veh/hr)

	То										
		WB	SB	EB	NB						
	WB	0	197	713	0						
From	SB	0	0	0	0						
	EB	560	154	0	0						
	NB	985	2	161	0						

Vehicle Mix

Truck Percentages

	0.00.		*									
		То										
		WB	SB	EB	NB							
	WB	5	5	5	5							
From	SB	5	5	5	5							
	EB	5	5	5	5							
	NB	5	5	5	5							

Results

Results Summary for whole modelled period

Nest	into Summary	ioi wiiole illoc	ielieu periou				
Leg	Max V/C Ratio	Max Delay (s)	Max Queue (Veh)	Max 95th percentile Queue (Veh)	Max LOS	Average Demand (Veh/hr)	Total Intersection Arrivals (Veh)
WB	0.77	14.80	3.1	15.0	В	910	713
SB							
EB	0.64	8.30	1.8	3.1	Α	714	714
NB	0.25	6.89	0.3	1.4	А	1148	163

Main Results for each time segment

00:00 - 00:15

Leg	Total Demand (Veh/hr)	Intersection demand (Veh/hr)	Intersection Arrivals (Veh)	Bypass demand (Veh/hr)	Bypass exit flow (Veh/hr)	Circulating flow (Veh/hr)	Pedestrian demand (Ped/hr)	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
WB	857	672	168	186	928	297	5.00	1035	0.649	664	524	0.0	1.8	9.536	Α
SB						815	5.00				146				
EB	673	673	168	0	0	0	5.00	1205	0.558	668	815	0.0	1.2	6.634	Α
NB	1081	154	38	928	0	668	5.00	774	0.198	153	0	0.0	0.2	5.772	Α

00:15 - 00:30

Leg	Total Demand (Veh/hr)	Intersection demand (Veh/hr)	Intersection Arrivals (Veh)	Bypass demand (Veh/hr)	Bypass exit flow (Veh/hr)	Circulating flow (Veh/hr)	Pedestrian demand (Ped/hr)	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
WB	989	775	194	214	1071	344	5.00	1007	0.769	770	607	1.8	3.1	14.803	В
SB						944	5.00				169				
EB	776	776	194	0	0	0	5.00	1205	0.644	774	944	1.2	1.8	8.303	Α
NB	1248	177	44	1071	0	774	5.00	699	0.254	177	0	0.2	0.3	6.894	Α

00:30 - 00:45

Leg	Total Demand (Veh/hr)	Intersection demand (Veh/hr)	Intersection Arrivals (Veh)	Bypass demand (Veh/hr)	Bypass exit flow (Veh/hr)	Circulating flow (Veh/hr)	Pedestrian demand (Ped/hr)	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
WB	936	734	183	203	1014	326	5.00	1018	0.721	735	577	3.1	2.7	12.854	В
SB						901	5.00				161				
EB	735	735	184	0	0	0	5.00	1205	0.610	735	901	1.8	1.6	7.675	Α
NB	1181	168	42	1014	0	735	5.00	726	0.231	168	0	0.3	0.3	6.451	Α

00:45 - 01:00

Leg	Total Demand (Veh/hr)	Intersection demand (Veh/hr)	Intersection Arrivals (Veh)	Bypass demand (Veh/hr)	Bypass exit flow (Veh/hr)	Circulating flow (Veh/hr)	Pedestrian demand (Ped/hr)	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
WB	857	672	168	186	928	299	5.00	1034	0.650	675	529	2.7	1.9	10.117	В
SB						827	5.00				147				
EB	673	673	168	0	0	0	5.00	1205	0.558	674	827	1.6	1.3	6.788	Α
NB	1081	154	38	928	0	674	5.00	770	0.199	154	0	0.3	0.3	5.845	Α

Queue Variation Results for each time segment

00:00 - 00:15

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker Probability of reaching or exceeding marker		Probability of exactly reaching marker
WB	1.79	0.07	1.07	4.13	5.86			N/A	N/A
SB									
EB	1.24	0.09	1.02	2.28	2.96			N/A	N/A
NB	0.25	0.00	0.00	0.25	0.25			N/A	N/A

00:15 - 00:30

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker Probability of reaching or exceeding marker		Probability of exactly reaching marker
WB	3.12	0.03	0.31	3.95	15.05			N/A	N/A
SB									
EB	1.76	0.03	0.27	1.76	2.07			N/A	N/A
NB	0.34	0.03	0.25	0.46	0.48			N/A	N/A

00:30 - 00:45

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
WB	2.69	0.03	0.27	2.69	2.85			N/A	N/A
SB									
EB	1.59	0.03	0.26	1.59	1.59			N/A	N/A
NB	0.30	0.03	0.31	1.08	1.44			N/A	N/A

00:45 - 01:00

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
WB	1.91	0.05	0.46	5.12	8.43			N/A	N/A
SB									
EB	1.28	0.09	1.04	2.42	3.14			N/A	N/A
NB	0.25	0.00	0.00	0.25	0.25			N/A	N/A

Junctions 10

ARCADY 10 - Roundabout Module

Version: 10.0.4.1693 © Copyright TRL Software Limited, 2021

For sales and distribution information, program advice and maintenance, contact TRL Software: +44 (0)1344 379777 software@trl.co.uk trlsoftware.com

The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: Arcady 12 LantzHwy102SB.j10

Path: C:\Users\copel\OneDrive\Desktop\GRIFFIN\Projects\2023\2323 - East Hants Traffic Study\Analysis\Opt 1 - Existing

Roads\Arcady

Report generation date: 3/28/2024 10:39:03 AM

«Existing Geometry - 2043 Total Opt 1, PM Vols

- »Intersection Network
- »Legs
- »Traffic Demand
- »Origin-Destination Data
- »Vehicle Mix
- »Results

Summary of intersection performance

					A	AM V	ols							P	M V	ols		
	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity
								Existing	Geometi	y - 2	023 Ba	seline						
Leg WB		0.2	0.5	3.57	0.16	Α			488 %		0.1	0.5	3.34	0.11	Α			687 %
Leg SB	D1	0.1	0.5	3.47	0.05	Α	3.55	A		D2	0.1	0.5	3.39	0.06	Α	3.36	A	''
Leg EB		0.0	~1	0.00	0.00	Α			[Leg WB]		0.0	~1	0.00	0.00	Α			[Leg SB]
								Existing 0	eometry	- 20	33 Tot	al Opt	1					
Leg WB		2.2	5.7	9.67	0.70	Α			37 %		1.1	1.5	6.33	0.53	Α			40 %
Leg SB	D3	0.3	1.4	6.39	0.24	Α	8.88	A		D4	1.1	1.5	9.01	0.53	Α	7.47	A	
Leg EB		0.1	0.5	7.05	0.06	Α			[Leg WB]		0.1	0.5	6.93	0.10	Α			[Leg SB]
								Existing 0	Seometry	- 20	43 Tot	al Opt	1					
Leg WB		15.4	74.0	46.99	0.98	Е			-3 %		3.5	16.7	13.49	0.79	В			-1 %
Leg SB	D5	0.7	2.4	10.64	0.40	В	36.00	E		D6	6.5	30.1	37.65	0.90	Е	23.26	С	
Leg EB		0.4	1.6	15.03	0.31	С			[Leg WB]		0.8	2.7	17.30	0.45	С			[Leg SB]

ated with one or more model runs - see the 'Data Errors and Warnings' tables for each Analysis or Demand Set.

Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle. Intersection LOS and Intersection Delay are demand-weighted averages. Network Residual Capacity indicates the amount by which network flow could be increased before a user-definable threshold (see Analysis Options) is met.

File summary

File Description

Title	East Milford TIS
Location	MEH - Trunk 2
Site number	2
Date	4/25/2023
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	
Analyst	SURFACEPRO7\copel
Description	

Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units
m	kph	Veh	Veh	perHour	s	-Min	perMin

Analysis Options

Vehic lengt (m)		Calculate detailed queueing delay	Show lane queues in feet / metres	Show all PICADY stream intercepts	Calculate residual capacity	Residual capacity criteria type	V/C Ratio Threshold	Average Delay threshold (s)	Queue threshold (PCE)	Use iterations with HCM roundabouts	Max number of iterations for roundabouts
5.75	✓				✓	Delay	0.85	36.00	20.00		500

Analysis Set Details

ID	Name	Description	Include in report	Network flow scaling factor (%)	Network capacity scaling factor (%)
A 1	Existing Geometry	Single lane entries	✓	100.000	100.000

II	D	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically
D	6	2043 Total Opt 1	PM Vols	PHF	00:00	01:00	15	✓

Existing Geometry - 2043 Total Opt 1, PM Vols

Data Errors and Warnings

Severity	Area	Item	Description
Last Run	Last Run	Leg EB - Capacity	Pedestrian Crossing causes blocking on previous leg due to traffic queing to leave the intersection in 4 timesegment(s).
Last Run	Last Run	Leg NB - Capacity	Pedestrian Crossing causes blocking on previous leg due to traffic queing to leave the intersection in 4 timesegment(s).
Warning	Queue variations	Analysis Options	Queue percentiles may be unreliable if the mean queue in any time segment is very low or very high.

Intersection Network

Intersections

Intersection	Name	Intersection type	Use circulating lanes	Leg order	Intersection Delay (s)	Intersection LOS
12	LantzConn&Hwy102SB	Standard Roundabout		WB, SB, EB, NB	23.26	С

Intersection Network

D	riving side	Lighting	Network residual capacity (%)	First leg reaching threshold	Network delay (s)	Network LOS
	Right	Normal/unknown	-1	Leg SB	23.26	С

Legs

Legs

Leg	Name	Description	No yield line
WB	LantzWB		
SB	OffRampSB		
EB	LantzEB		
NB	OnRampSB		

Roundabout Geometry

	······································									
Leg	V - Approach road half- width (m)	E - Entry width (m)	l' - Effective flare length (m)	R - Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Entry only	Exit only		
WB	3.50	4.00	30.0	30.0	45.0	20.0				
SB	3.50	4.00	30.0	30.0	45.0	20.0	✓			
EB	3.50	4.00	30.0	30.0	45.0	20.0				
NB								✓		

Bypass

Leg	Leg has bypass	Bypass utilisation (%)
WB		
SB	✓	100
EB	✓	100
NB		

Unsignalled Pedestrian Crossing Crossings

Leg	Space between crossing and intersection entry (Unsignalled Pedestrian Crossing) (PCE)	Vehicles queueing on exit (Unsignalled Pedestrian Crossing) (PCE)	Central Refuge	Crossing data type	Crossing length (entry side) (m)	Crossing time (entry side) (s)	Crossing length (exit side) (m)	Crossing time (exit side) (s)
WB	1.00	1.00	✓	Distance	4.00	2.86	4.00	2.86
SB	1.00	1.00	✓	Distance	4.00	2.86	4.00	2.86
EB	1.00	1.00	✓	Distance	4.00	2.86	4.00	2.86
NB		1.00	✓	Distance			4.00	2.86

Slope / Intercept / Capacity

Roundabout Slope and Intercept used in model

Leg	Final slope	Final intercept (PCE/hr)
WB	0.558	1266
SB	0.558	1266
EB	0.558	1266
NB		

The slope and intercept shown above include any corrections and adjustments.

Traffic Demand

Vehicle mix varies over turn	Vehicle mix varies over entry	Vehicle mix source	PCE Factor for a Truck (PCE)
✓	✓	Truck Percentages	2.00

Demand overview (Traffic)

Leg	Linked leg	Profile type	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (%)
WB		PHF	✓	874	100.000
SB		PHF	✓	721	100.000
EB		PHF	✓	309	100.000
NB					

Peak Hour Factor Data (Traffic)

Leg	Hourly volume (Veh/hr)	Peak hour factor	Peak time segment
WB	874	0.92	SecondQuarter
SB	721	0.92	SecondQuarter
EB	309	0.92	SecondQuarter
NB			

Demand overview (Pedestrians)

Leg	Profile type	Average pedestrian flow (Ped/hr)
WB	[PHF]	5.00
SB	[PHF]	5.00
EB	[PHF]	5.00
NB	[PHF]	5.00

Peak Hour Factor Data (Pedestrians)

Leg	Hourly volume (Ped/hr)	Peak hour factor	Peak time segment	
WB	5.00	1.00	SecondQuarter	
SB	5.00	1.00	SecondQuarter	
EB	5.00	1.00 Secon		
NB	5.00	1.00	SecondQuarter	

Origin-Destination Data

Demand (Veh/hr)

	То						
		WB	SB	EB	NB		
	WB	0	0	160	714		
From	SB	560	0	161	0		
	EB	154	0	0	155		
	NB	0	0	0	0		

Vehicle Mix

Truck Percentages

Traok i Groomageo							
	То						
		WB	SB	EB	NB		
	WB	5	5	5	5		
From	SB	5	5	5	5		
	EB	5	5	5	5		
	NB	5	5	5	5		

Results

Results Summary for whole modelled period

	······································									
Leg	Max V/C Ratio	Max Delay (s)	Max Queue (Veh)	Max 95th percentile Queue (Veh)	Max LOS	Average Demand (Veh/hr)	Total Intersection Arrivals (Veh)			
WB	0.79	13.49	3.5	16.7	В	874	874			
SB	0.90	37.65	6.5	30.1	Е	721	560			
ЕВ	0.45	17.30	0.8	2.7	С	309	154			
NB										

Main Results for each time segment

00:00 - 00:15

Leg	Total Demand (Veh/hr)	Intersection demand (Veh/hr)	Intersection Arrivals (Veh)	Bypass demand (Veh/hr)	Bypass exit flow (Veh/hr)	Circulating flow (Veh/hr)	Pedestrian demand (Ped/hr)	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
WB	823	823	206	0	0	0	5.00	1205	0.683	815	662	0.0	2.1	9.039	Α
SB	679	528	132	152	0	815	5.00	747	0.706	518	0	0.0	2.3	15.201	С
EB	291	145	36	146	152	1184	5.00	480	0.302	143	149	0.0	0.4	10.636	В
NB						662	5.00				666				

00:15 - 00:30

Leg	Total Demand (Veh/hr)	Intersection demand (Veh/hr)	Intersection Arrivals (Veh)	Bypass demand (Veh/hr)	Bypass exit flow (Veh/hr)	Circulating flow (Veh/hr)	Pedestrian demand (Ped/hr)	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
WB	950	950	238	0	0	0	5.00	1205	0.788	944	758	2.1	3.5	13.491	В
SB	784	609	152	175	0	944	5.00	674	0.903	592	0	2.3	6.5	37.651	Е
EB	336	167	42	168	175	1363	5.00	372	0.450	166	173	0.4	0.8	17.305	С
NB						758	5.00				772				

00:30 - 00:45

Leg	Total Demand (Veh/hr)	Intersection demand (Veh/hr)	Intersection Arrivals (Veh)	Bypass demand (Veh/hr)	Bypass exit flow (Veh/hr)	Circulating flow (Veh/hr)	Pedestrian demand (Ped/hr)	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
WB	899	899	225	0	0	0	5.00	1205	0.746	901	740	3.5	3.1	11.919	В
SB	742	576	144	166	0	901	5.00	699	0.825	581	0	6.5	5.3	32.119	D
EB	318	158	40	159	166	1317	5.00	401	0.395	159	165	0.8	0.7	14.893	В
NB						740	5.00				736				

00:45 - 01:00

Leg	Total Demand (Veh/hr)	Intersection demand (Veh/hr)	Intersection Arrivals (Veh)	Bypass demand (Veh/hr)	Bypass exit flow (Veh/hr)	Circulating flow (Veh/hr)	Pedestrian demand (Ped/hr)	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
WB	823	823	206	0	0	0	5.00	1205	0.683	827	684	3.1	2.2	9.593	A
SB	679	528	132	152	0	827	5.00	741	0.712	538	0	5.3	2.6	18.621	С
EB	291	145	36	146	152	1214	5.00	464	0.313	146	151	0.7	0.5	11.354	В
NB						684	5.00				675				

Queue Variation Results for each time segment

00:00 - 00:15

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
WB	2.09	0.07	1.06	5.12	7.46			N/A	N/A
SB	2.27	0.07	1.11	5.66	8.21			N/A	N/A
EB	0.43	0.00	0.00	0.43	0.43			N/A	N/A
NB									

00:15 - 00:30

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
WB	3.49	0.03	0.31	4.30	16.70			N/A	N/A
SB	6.51	0.06	1.27	18.73	30.12			N/A	N/A
EB	0.79	0.03	0.26	0.79	0.79			N/A	N/A
NB									

00:30 - 00:45

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
WB	3.06	0.03	0.27	3.06	3.06			N/A	N/A
SB	5.29	0.03	0.33	9.52	27.97			N/A	N/A
EB	0.67	0.03	0.28	0.91	2.68			N/A	N/A
NB									

00:45 - 01:00

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
WB	2.22	0.05	0.45	6.07	10.20			N/A	N/A
SB	2.62	0.03	0.35	5.98	14.00			N/A	N/A
EB	0.46	0.04	0.40	1.23	1.36			N/A	N/A
NB									

Junctions 10

ARCADY 10 - Roundabout Module

Version: 10.0.4.1693 © Copyright TRL Software Limited, 2021

For sales and distribution information, program advice and maintenance, contact TRL Software: +44 (0)1344 379777 software@trl.co.uk trlsoftware.com

The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: Arcady 21 Trunk2OldEnfield.j10

Path: C:\Users\copel\OneDrive\Desktop\GRIFFIN\Projects\2023\2323 - East Hants Traffic Study\Analysis\Opt 1 - Existing

Roads\Arcady

Report generation date: 3/28/2024 10:41:41 AM

«Future Geometry - 2043 Total Opt 1, PM Vols

- »Intersection Network
- »Legs
- »Traffic Demand
- »Origin-Destination Data
- »Vehicle Mix
- »Results

Summary of intersection performance

					-	AM V	ols							F	PM V	ols		
	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity
								Future G	eometry	- 203	3 Tota	Opt 1						
Leg SB		0.8	1.5	3.70	0.45	Α			72 %		0.5	1.9	3.28	0.32	Α			51 %
Leg EB	-I -	0.3	1.3	7.25	0.23	Α	4.35	Α		D4	0.2	0.5	5.46	0.18	Α	4.49	A	
Leg NB		0.2	0.5	2.18	0.18	Α			[Leg EB]		1.7	3.6	4.90	0.64	Α			[Leg NB]
		Future Geometry - 2043 Total Opt 1																
Leg SB		0.9	1.5	3.88	0.48	Α			64 %		0.5	2.0	3.46	0.34	Α			40 %
Leg EB	D5	0.3	1.5	7.70	0.26	Α	4.63	Α	••••	D6	0.2	1.0	5.63	0.19	Α	5.05	Α	
Leg NB		0.2	0.5	2.23	0.20	Α			[Leg EB]		2.2	5.1	5.73	0.69	Α			[Leg NB]
	Future Geometry - 2053 Total Opt 2																	
Leg SB		1.1	1.5	4.30	0.52	Α			56 %		0.6	1.9	4.24	0.39	Α			16 %
Leg EB	D7	0.4	1.4	8.25	0.28	Α	5.23	Α		D8	0.3	1.2	5.84	0.21	Α	8.34	Α	
Leg NB		0.3	1.3	2.36	0.24	Α			[Leg EB]		5.1	25.1	10.94	0.85	В			[Leg NB]

ated with one or more model runs - see the 'Data Errors and Warnings' tables for each Analysis or Demand Set.

Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle. Intersection LOS and Intersection Delay are demand-weighted averages. Network Residual Capacity indicates the amount by which network flow could be increased before a user-definable threshold (see Analysis Options) is met.

File summary

File Description

Title	East Hants Traffic Study
Location	MEH - Trunk 2
Site number	21
Date	3/25/2024
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	
Analyst	SURFACEPRO7\copel
Description	

Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units
m	kph	Veh	Veh	perHour	s	-Min	perMin

Analysis Options

Vehicle length (m)	Calculate Queue Percentiles	Calculate detailed queueing delay	Show lane queues in feet / metres	Show all PICADY stream intercepts	Calculate residual capacity	Residual capacity criteria type	V/C Ratio Threshold	Average Delay threshold (s)	Queue threshold (PCE)	Use iterations with HCM roundabouts	Max number of iterations for roundabouts
5.75	✓				✓	Delay	0.85	36.00	20.00		500

Analysis Set Details

ID	Name	Include in report	Network flow scaling factor (%)	Network capacity scaling factor (%)	
A1	Future Geometry	✓	100.000	100.000	

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically
D6	2043 Total Opt 1	PM Vols	PHF	16:00	17:00	15	✓

Future Geometry - 2043 Total Opt 1, PM Vols

Data Errors and Warnings

Severity	Area	Item	Description	
Warning	Pedestrian Crossing	Leg SB - Pedestrian crossing	Pedestrian crossing uses default flow of 0. Is this correct? Pedestrian crossing uses default flow of 0. Is this correct?	
Warning	Pedestrian Crossing	Leg EB - Pedestrian crossing		
Warning	Pedestrian Crossing	Leg NB - Pedestrian crossing	Pedestrian crossing uses default flow of 0. Is this correct?	
Warning	Queue variations	Analysis Options	Queue percentiles may be unreliable if the mean queue in any time segment is very low or very high.	

Intersection Network

Intersections

Intersection Name		Intersection type	tersection type Use circulating lanes		Intersection Delay (s)	Intersection LOS	
2	21	Trunk2OldEnfieldRd	Standard Roundabout		SB, EB, NB	5.05	Α

Intersection Network

Driving side Lighting		Network residual capacity (%)	First leg reaching threshold	Network delay (s)	Network LOS
Right	Normal/unknown	40	Lea NB	5.05	Α

Legs

Legs

Leg	Name	Description	No yield line
SB	Tk2SB		
EB	OldEnfldEB		
NB	Tk2NB		

Roundabout Geometry

Leg	V - Approach road half- width (m)	E - Entry width (m)	l' - Effective flare length (m)	R - Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Entry only	Exit only
SB	3.50	7.00	30.0	30.0	50.0	20.0		
EB	3.50	3.50	0.0	30.0	50.0	20.0		
NB	7.00	7.00	0.0	30.0	50.0	20.0		

Bypass

Leg	Leg has bypass	Bypass utilisation (%)
SB	✓	100
EB	✓	100
NB		

Unsignalled Pedestrian Crossing Crossings

•	oneignanda i daddiran diddonig							
Leg	Space between crossing and intersection entry (Unsignalled Pedestrian Crossing) (PCE) Vehicles queueing on exit (Unsignalled Pedestrian Crossing) (PCE)		Central Refuge	Crossing data type	Crossing length (entry side) (m)	Crossing time (entry side) (s)	Crossing length (exit side) (m)	Crossing time (exit side) (s)
SB	1.00	1.00	✓	Distance	7.00	5.00	4.00	2.86
EB	1.00	1.00	✓	Distance	4.00	2.86	4.00	2.86
NB	1.00	1.00	✓	Distance	7.00	5.00	4.00	2.86

Slope / Intercept / Capacity

Roundabout Slope and Intercept used in model

Leg	Final slope	Final intercept (PCE/hr)
SB	0.666	1926
EB	0.512	1115
NB	0.723	2229

The slope and intercept shown above include any corrections and adjustments.

Traffic Demand

Vehicle mix varies over turn	Vehicle mix varies over entry	Vehicle mix source	PCE Factor for a Truck (PCE)
✓	✓	Truck Percentages	2.00

Demand overview (Traffic)

Leg	Leg Linked leg Profile type		Use O-D data	Average Demand (Veh/hr)	Scaling Factor (%)
SB		PHF	✓	668	100.000
EB		PHF	✓	321	100.000
NB		PHF	✓	1280	100.000

Peak Hour Factor Data (Traffic)

Leg	Hourly volume (Veh/hr)	Peak hour factor	Peak time segment
SB	668	0.92	SecondQuarter
EB	321	0.92	SecondQuarter
NB	1280	0.92	SecondQuarter

Demand overview (Pedestrians)

Leg	Profile type	Average pedestrian flow (Ped/hr)
SB	[PHF]	1.00
EB	[PHF]	1.00
NB	[PHF]	1.00

Peak Hour Factor Data (Pedestrians)

I	Leg	Hourly volume (Ped/hr)	Peak hour factor	Peak time segment
	SB	1.00	1.00	SecondQuarter
	ЕВ	1.00	1.00	SecondQuarter
П	NB	1.00	1.00	SecondQuarter

Origin-Destination Data

Demand (Veh/hr)

		То									
		SB	EB	NB							
From	SB	0	183	485							
From	EB	140	0	181							
	NB	908	372	0							

Vehicle Mix

Truck Percentages

		Т	о	
		SB	EB	NB
Fram	SB	5	5	5
From	EB	5	5	5
	NB	5	5	5

Results

Results Summary for whole modelled period

Leg	Max V/C Ratio	Max Delay (s)	Max Queue (Veh)	Max 95th percentile Queue (Veh)	Max LOS	Average Demand (Veh/hr)	Total Intersection Arrivals (Veh)
SB	0.34	3.46	0.5	2.0	Α	668	485
EB	0.19	5.63	0.2	1.0	Α	321	140
NB	0.69	5.73	2.2	5.1	А	1280	1280

Main Results for each time segment

16:00 - 16:15

Leg	Total Demand (Veh/hr)	Intersection demand (Veh/hr)	Intersection Arrivals (Veh)	Bypass demand (Veh/hr)	Bypass exit flow (Veh/hr)	Circulating flow (Veh/hr)	Pedestrian demand (Ped/hr)	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
SB	629	457	114	172	0	349	0.00	1602	0.285	455	982	0.0	0.4	3.135	Α
EB	302	132	33	171	172	455	0.00	828	0.159	131	349	0.0	0.2	5.159	Α
NB	1206	1206	301	0	171	131	0.00	2028	0.595	1200	455	0.0	1.4	4.317	Α

16:15 - 16:30

Leg	Total Demand	Intersection demand	Intersection Arrivals	Bypass demand	Bypass exit flow	Circulating flow	Pedestrian demand	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side)	Start queue	End queue	Delay (s)	Unsignalised level of	
-----	-----------------	---------------------	--------------------------	------------------	------------------------	------------------	----------------------	----------------------	--------------	------------------------	---------------------------	-------------	--------------	--------------	--------------------------	--

	(Veh/hr)	(Veh/hr)	(Veh)	(Veh/hr)	(Veh/hr)	(Veh/hr)	(Ped/hr)				(Veh/hr)	(Veh)	(Veh)		service
SB	726	527	132	199	0	403	0.00	1566	0.337	527	1137	0.4	0.5	3.462	Α
EB	349	152	38	197	199	527	0.00	792	0.192	152	403	0.2	0.2	5.627	Α
NB	1391	1391	348	0	197	152	0.00	2013	0.691	1388	527	1.4	2.2	5.734	Α

16:30 - 16:45

Leg	Total Demand (Veh/hr)	Intersection demand (Veh/hr)	Intersection Arrivals (Veh)	Bypass demand (Veh/hr)	Bypass exit flow (Veh/hr)	Circulating flow (Veh/hr)	Pedestrian demand (Ped/hr)	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
SB	687	499	125	188	0	383	0.00	1579	0.316	499	1079	0.5	0.5	3.332	A
EB	330	144	36	186	188	499	0.00	806	0.179	144	383	0.2	0.2	5.443	A
NB	1317	1317	329	0	186	144	0.00	2019	0.652	1318	499	2.2	1.9	5.150	Α

16:45 - 17:00

Leg	Total Demand (Veh/hr)	Intersection demand (Veh/hr)	Intersection Arrivals (Veh)	Bypass demand (Veh/hr)	Bypass exit flow (Veh/hr)	Circulating flow (Veh/hr)	Pedestrian demand (Ped/hr)	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
SB	629	457	114	172	0	351	0.00	1601	0.285	457	989	0.5	0.4	3.150	A
EB	302	132	33	171	172	457	0.00	827	0.159	132	351	0.2	0.2	5.180	А
NB	1206	1206	301	0	171	132	0.00	2028	0.595	1207	457	1.9	1.5	4.398	А

Queue Variation Results for each time segment

16:00 - 16:15

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
SB	0.40	0.00	0.00	0.40	0.40			N/A	N/A
EB	0.19	0.00	0.00	0.19	0.19			N/A	N/A
NB	1.45	0.06	0.71	3.48	5.08		N/A		N/A

16:15 - 16:30

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
SB	0.50	0.03	0.25	0.50	0.50			N/A	N/A
EB	0.24	0.03	0.25	0.46	0.48			N/A	N/A
NB	2.19	0.03	0.27	2.19	2.19			N/A	N/A

16:30 - 16:45

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
SB	0.46	0.03	0.29	1.11	2.03			N/A	N/A
EB	0.22	0.03	0.28	0.52	1.02			N/A	N/A
NB	1.91	0.03	0.26	1.91	1.91			N/A	N/A

16:45 - 17:00

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
SB	0.40	0.00	0.00	0.40	0.40			N/A	N/A
EB	0.19	0.00	0.00	0.19	0.19			N/A	N/A
NB	1.48	0.11	1.19	2.78	3.65			N/A	N/A

ROAD NETWORK - OPTION 2 Roundabouts

#9 - Trunk 2 / Lantz Connector Rd

					I	AM Vo	ols							P	M Vo	ls		
	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity
								E	cisting Geometry	- 204	3 Total C	pt 2						
Leg WB		0.0	0.5	3.92	0.01	Α					0.1	0.5	7.70	0.05	Α			
Leg SB	D5	1.5	2.5	5.07	0.60	Α	4.01	A	60 %	D6	0.7	1.5	3.57	0.42	Α	3.72	A	50 %
Leg EB	Do	0.2	0.5	2.40	0.17	Α	4.01		[Leg SB]	D0	0.9	1.5	3.81	0.49	Α	3.12	^	[Leg WB]
Leg NB		0.2	0.5	2.19	0.17	Α					0.6	2.0	3.59	0.37	Α			
								Ex	cisting Geometry	- 205	3 Total C	pt 2						
Leg WB		0.0	0.5	4.14	0.01	Α					0.1	0.5	11.47	0.08	В			
Leg SB	D7	3.0	8.2	8.18	0.75	Α	6.11	Α	29 %	D8	1.0	1.5	4.19	0.50	Α	4.64	A	24 %
Leg EB	07	0.2	0.5	2.59	0.20	Α	0.11	A	[Leg SB]	108	1.4	2.2	4.79	0.59	Α	4.04	^	[Leg WB]
Leg NB		0.3	0.8	2.31	0.20	Α					0.9	1.5	4.71	0.48	Α			

#10 - Lantz Connector Rd / Shaw Dr

					A	AM Vo	ols							F	PM Vo	ls		
	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity
								Ex	xisting Geometry	- 204	3 Total (Opt 2						
Leg WB		1.0	1.4	4.97	0.50	Α			48 %		0.4	1.8	3.26	0.31	Α			37 %
Leg EB	D5	0.2	0.5	2.17	0.19	Α	3.75	Α		D6	1.9	3.7	5.59	0.65	Α	5.14	Α	
Leg NB		0.4	1.5	3.11	0.26	Α			[Leg WB]		0.8	1.6	6.00	0.43	Α			[Leg EB]
								Ex	xisting Geometry	- 205	3 Total (Opt 2						
Leg WB		1.9	2.9	7.53	0.66	Α			26 %		0.6	2.1	3.60	0.36	Α			24 %
Leg EB	D7	0.3	0.9	2.23	0.21	Α	5.20	Α		D8	2.9	6.9	7.62	0.75	Α	6.77	Α	
Leg NB		0.4	1.1	3.19	0.27	Α			[Leg WB]		1.1	1.4	8.10	0.52	Α			[Leg EB]

#11 - Lantz Connector Rd / Exit 8A NB Ramps

					A	M Vo	ls							P	M Vo	ls		
	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity
								Ex	cisting Geometry	- 204	3 Total C	pt 2						
Leg WB		2.6	9.8	11.91	0.73	В			26 %		1.3	1.7	8.17	0.57	Α			48 %
Leg EB	D5	0.3	1.3	3.89	0.23	Α	8.85	Α		D6	1.1	1.5	6.17	0.52	Α	6.56	Α	
Leg NB		0.1	0.5	3.87	0.11	Α			[Leg WB]		0.3	1.2	5.65	0.22	Α			[Leg WB]
								Ex	cisting Geometry	- 205	3 Total C	pt 2						
Leg WB		4.7	25.8	19.06	0.84	С			11 %		1.6	2.5	9.21	0.62	Α			39 %
Leg EB	D7	0.3	1.3	3.89	0.23	Α	13.69	В		D8	1.3	1.8	6.95	0.57	Α	7.28	Α	
Leg NB		0.1	0.5	3.87	0.11	Α			[Leg WB]		0.3	1.3	6.13	0.23	Α			[Leg WB]

#12 - Lantz Connector Rd / Exit 8A SB Ramps

					A	M Vo	ls							P	M Vo	ls		
	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity
								Ex	cisting Geometry	- 204	3 Total C	pt 2						
Leg WB		2.8	10.6	11.32	0.74	В			29 %		1.6	2.5	7.75	0.62	Α			29 %
Leg SB	D5	0.3	1.3	6.64	0.23	Α	9.86	Α		D6	1.3	1.8	10.80	0.58	В	9.06	A	
Leg EB		0.2	0.9	7.84	0.19	Α			[Leg WB]		0.4	1.4	8.69	0.29	Α			[Leg SB]
								Ex	cisting Geometry	- 205	3 Total C	pt 2						
Leg WB		4.9	26.8	17.64	0.85	С			13 %		1.9	3.7	8.69	0.66	Α			16 %
Leg SB	D7	0.4	1.2	7.73	0.27	Α	14.70	В		D8	2.1	8.6	14.86	0.69	В	11.38	В	
Leg EB		0.3	1.3	9.93	0.23	Α			[Leg WB]		0.5	1.8	10.40	0.33	В			[Leg SB]

#22 - Trunk 2 / New North Connector Rd

					A	M Vo	ls							P	M Vo	ls		
	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity
								F	uture Geometry	- 2053	Total O	ot 2						
Leg SB		0.4	1.5	7.33	0.29	Α			18 %		0.4	1.7	6.18	0.30	Α			24 %
Leg EB	D7	0.0	0.5	3.73	0.01	Α	12.56	В	D8	D8	0.0	0.5	4.03	0.03	Α	8.52	Α	
Leg NB		3.6	18.7	16.01	0.80	С			[Leg NB]		2.7	11.3	13.14	0.74	В			[Leg NB]

#23 - New North Connector Rd / New I/C NB Ramps

					A	M Vo	ls							P	M Vol	s		
	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity
								F	uture Geometry	205	Total O	ot 2						
Leg WB		0.6	1.7	4.93	0.39	Α			142 %		0.3	1.4	3.97	0.25	Α			287 %
Leg EB	D5	0.0	0.5	3.11	0.04	Α	4.46	Α	D6	D6	0.1	0.5	3.40	0.12	Α	3.53	Α	
Leg NB		0.0	0.5	3.06	0.00	Α			[Leg WB]		0.0	0.5	3.22	0.00	Α			[Leg WB]

#24 - New North Connector Rd / New I/C SB Ramps

					A	M Vo	ls							Р	M Vo	ls		
	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity
								Ex	cisting Geometry	- 205	3 Total O	pt 2						
Leg WB	D5	0.6	1.8	4.92	0.39	Α	4.86		143 %	D6	0.3	1.4	3.96	0.25	Α	4.02		208 %
Leg SB	DS	0.1	0.5	4.29	0.08	Α	4.00	A	[Leg WB]	D0	0.2	0.5	4.13	0.14	Α	4.02	A	[Leg SB]

Junctions 10

ARCADY 10 - Roundabout Module

Version: 10.0.4.1693 © Copyright TRL Software Limited, 2021

For sales and distribution information, program advice and maintenance, contact TRL Software: +44 (0)1344 379777 software@trl.co.uk trlsoftware.com

The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Report generation date: 3/28/2024 9:16:44 AM

«Existing Geometry - 2053 Total Opt 2, PM Vols

- »Intersection Network
- »Legs
- »Traffic Demand
- »Origin-Destination Data
- »Vehicle Mix
- »Results

Summary of intersection performance

					-	AM V	ols							F	PM V	ols		
	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity
								Existing 6	eometry	· - 20	43 Tot	al Opt 2	2					
Leg WB		0.0	0.5	3.92	0.01	Α					0.1	0.5	7.70	0.05	Α			
Leg SB	D5	1.5	2.5	5.07	0.60	Α	4.01	A	60 %	D6	0.7	1.5	3.57	0.42	Α	3.72	A	50 %
Leg EB	03	0.2	0.5	2.40	0.17	Α	4.01	_ ^	[Leg SB]	Do	0.9	1.5	3.81	0.49	Α	3.72	_ ^	[Leg WB]
Leg NB		0.2	0.5	2.19	0.17	Α					0.6	2.0	3.59	0.37	Α			
								Existing 6	Seometry	· - 20	53 Tot	al Opt 2	2					
Leg WB		0.0	0.5	4.14	0.01	Α					0.1	0.5	11.47	0.08	В			
Leg SB	D7	3.0	8.2	8.18	0.75	Α	6.11	A	29 %	D8	1.0	1.5	4.19	0.50	Α	4.64		24 %
Leg EB] "	0.2	0.5	2.59	0.20	Α	0.11	^	[Leg SB]	□8	1.4	2.2	4.79	0.59	Α	4.04	A	[Leg WB]
Leg NB		0.3	0.8	2.31	0.20	Α			1		0.9	1.5	4.71	0.48	Α			

There are warnings associated with one or more model runs - see the 'Data Errors and Warnings' tables for each Analysis or Demand Set.

Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle. Intersection LOS and Intersection Delay are demand-weighted averages. Network Residual Capacity indicates the amount by which network flow could be increased before a user-definable threshold (see Analysis Options) is met.

File summary

File Description

Title	East Hants Traffic Study
Location	MEH - Trunk 2
Site number	9
Date	3/25/2024
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	
Analyst	SURFACEPRO7\copel
Description	Option 2

Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units
m	kph	Veh	Veh	perHour	s	-Min	perMin

Analysis Options

Vehi leng (m		Calculate detailed queueing delay	Show lane queues in feet / metres	Show all PICADY stream intercepts	Calculate residual capacity	Residual capacity criteria type	V/C Ratio Threshold	Average Delay threshold (s)	Queue threshold (PCE)	Use iterations with HCM roundabouts	Max number of iterations for roundabouts
5.7	✓				✓	Delay	0.85	36.00	20.00		500

Analysis Set Details

ID	Name	Description	Include in report	Network flow scaling factor (%)	Network capacity scaling factor (%)
A1	Existing Geometry	Two lane entries	✓	100.000	100.000

ID	Scenario name	Time Period name	Description	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically
D8	2053 Total Opt 2	PM Vols	full build-out	PHF	00:00	01:00	15	✓

Existing Geometry - 2053 Total Opt 2, PM Vols

Data Errors and Warnings

Severity	Severity Area Item		Description
Warning	Pedestrian Crossing	Leg WB - Pedestrian crossing	Pedestrian crossing uses default flow of 0. Is this correct?
Warning	Warning Pedestrian Crossing Leg SB - Pedestrian crossing uses default flow of 0. Is this correct?		Pedestrian crossing uses default flow of 0. Is this correct?
Warning	Pedestrian Crossing	Leg EB - Pedestrian crossing	Pedestrian crossing uses default flow of 0. Is this correct?
Warning Pedestrian Crossing Leg NB - Pedestrian crossing Pedestrian crossing			Pedestrian crossing uses default flow of 0. Is this correct?
Warning	Queue variations	Analysis Options	Queue percentiles may be unreliable if the mean queue in any time segment is very low or very high.

Intersection Network

Intersections

Intersection		Name	Intersection type	Use circulating lanes	Leg order	Intersection Delay (s)	Intersection LOS
	9	LantzConn&Tk2_Opt2	Standard Roundabout		WB, SB, EB, NB	4.64	A

Intersection Network

Driving side Lighting		Network residual capacity (%)	First leg reaching threshold	Network delay (s)	Network LOS	
Right	Normal/unknown	24	Leg WB	4.64	Α	

Legs

Legs

Leg	Name	Description	No yield line
WB	ClayWB		
SB	Tk2SB		
EB	LantzEB		
NB	Tk2NB		

Roundabout Geometry

Leg	V - Approach road half- width (m)	E - Entry width (m)	l' - Effective flare length (m)	R - Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Entry only	Exit only
WB	3.50	4.00	30.0	30.0	50.0	20.0		
SB	3.50	7.00	30.0	30.0	50.0	20.0		
EB	7.00	7.00	0.0	30.0	50.0	20.0		
NB	7.00	7.00	0.0	30.0	50.0	20.0		

Unsignalled Pedestrian Crossing Crossings

	9999								
Leg	Space between crossing and intersection entry (Unsignalled Pedestrian Crossing) (PCE)	Vehicles queueing on exit (Unsignalled Pedestrian Crossing) (PCE)	Central Refuge	Crossing data type	Crossing length (entry side) (m)	Crossing time (entry side) (s)	Crossing length (exit side) (m)	Crossing time (exit side) (s)	
WB	1.00	1.00	✓	Distance	4.00	2.86	4.00	2.86	
SB	1.00	1.00	✓	Distance	7.00	5.00	7.00	5.00	
ЕВ	1.00	1.00	✓	Distance	7.00	5.00	4.00	2.86	
NB	1.00	1.00	✓	Distance	7.00	5.00	4.00	2.86	

Slope / Intercept / Capacity

Roundabout Slope and Intercept used in model

		oo ana mioroopi acca		
Leg	Final slope	Final intercept (PCE/hr)		
WB	0.541	1266		
SB	0.666	1926		
EB	0.723	2229		
NB	0.723	2229		

The slope and intercept shown above include any corrections and adjustments.

Traffic Demand

Vehicle mix varies over turn	Vehicle mix varies over entry	Vehicle mix source	PCE Factor for a Truck (PCE)	
✓	✓	Truck Percentages	2.00	

Demand overview (Traffic)

Leg	Linked leg	Profile type	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (%)
WB		PHF	✓	24	100.000
SB		PHF	✓	794	100.000
EB		PHF	✓	993	100.000
NB		PHF	✓	656	100.000

Peak Hour Factor Data (Traffic)

Leg	Hourly volume (Veh/hr)	Peak hour factor	Peak time segment
WB	24	0.92	SecondQuarter
SB	794	0.92	SecondQuarter
EB	993	0.92	SecondQuarter
NB	656	0.92	SecondQuarter

Demand overview (Pedestrians)

Leg	Profile type	Average pedestrian flow (Ped/hr)
WB	[PHF]	0.00
SB	[PHF]	0.00
EB	[PHF]	0.00
NB	[PHF]	0.00

Peak Hour Factor Data (Pedestrians)

Leg	Hourly volume (Ped/hr)	Peak hour factor	Peak time segment
WB	0.00	1.00	SecondQuarter
SB	0.00	1.00	SecondQuarter
EB	0.00	1.00	SecondQuarter
NB	0.00	1.00	SecondQuarter

Origin-Destination Data

Demand (Veh/hr)

			То		
		WB	SB	EB	NB
	WB	0	6	13	5
From	SB	1	0	423	370
	EB	3	821	0	169
	NB	2	514	140	0

Vehicle Mix

Truck Percentages

			То		
		WB	SB	EB	NB
	WB	5	5	5	5
From	SB	5	5	5	5
	EB	5	5	5	5
	NB	5	5	5	5

Results

Results Summary for whole modelled period

Leg	Max V/C Ratio	Max Delay (s)	Max Queue (Veh)	Max 95th percentile Queue (Veh)	Max LOS	Average Demand (Veh/hr)	Total Intersection Arrivals (Veh)
WB	0.08	11.47	0.1	0.5	В	24	24
SB	0.50	4.19	1.0	1.5	Α	794	794
EB	0.59	4.79	1.4	2.2	Α	993	993
NB	0.48	4.71	0.9	1.5	Α	656	656

Main Results for each time segment

00:00 - 00:15

Leg	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Circulating flow (Veh/hr)	Pedestrian demand (Ped/hr)	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
WB	23	6	1384	0.00	457	0.049	22	6	0.0	0.1	8.281	Α
SB	748	187	148	0.00	1736	0.431	745	1258	0.0	0.8	3.623	Α
EB	935	234	353	0.00	1868	0.501	931	540	0.0	1.0	3.828	Α
NB	618	154	774	0.00	1563	0.395	615	510	0.0	0.6	3.789	Α

00:15 - 00:30

Leg	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Circulating flow (Veh/hr)	Pedestrian demand (Ped/hr)	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
WB	26	7	1601	0.00	340	0.077	26	7	0.1	0.1	11.472	В
SB	863	216	171	0.00	1720	0.502	862	1455	0.8	1.0	4.190	А
EB	1079	270	408	0.00	1828	0.591	1078	625	1.0	1.4	4.789	А
NB	713	178	895	0.00	1475	0.483	712	591	0.6	0.9	4.708	Α

00:30 - 00:45

Leg	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Circulating flow (Veh/hr)	Pedestrian demand (Ped/hr)	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
WB	25	6	1519	0.00	384	0.064	25	6	0.1	0.1	10.027	В
SB	817	204	163	0.00	1726	0.473	817	1381	1.0	0.9	3.964	Α
EB	1022	255	387	0.00	1843	0.554	1022	593	1.4	1.3	4.392	Α
NB	675	169	849	0.00	1509	0.447	675	560	0.9	0.8	4.324	Α

00:45 - 01:00

Leg	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Circulating flow (Veh/hr)	Pedestrian demand (Ped/hr)	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
WB	23	6	1391	0.00	453	0.050	23	6	0.1	0.1	8.367	Α
SB	748	187	149	0.00	1735	0.431	749	1265	0.9	0.8	3.649	A
EB	935	234	354	0.00	1867	0.501	936	543	1.3	1.0	3.874	Α
NB	618	154	778	0.00	1560	0.396	619	513	0.8	0.7	3.827	Α

Queue Variation Results for each time segment

00:00 - 00:15

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
WB	0.05	0.03	0.25	0.45	0.48			N/A	N/A
SB	0.75	0.12	0.88	1.40	1.46			N/A	N/A
EB	0.99	0.08	0.88	1.73	2.20			N/A	N/A
NB	0.65	0.11	0.85	1.37	1.44			N/A	N/A

00:15 - 00:30

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
WB	0.08	0.03	0.26	0.47	0.50			N/A	N/A
SB	1.00	0.03	0.26	1.00	1.00			N/A	N/A
EB	1.42	0.03	0.26	1.42	1.42			N/A	N/A
NB	0.93	0.03	0.26	0.93	0.93			N/A	N/A

00:30 - 00:45

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
WB	0.07	0.03	0.25	0.45	0.48			N/A	N/A
SB	0.91	0.03	0.26	0.91	0.91			N/A	N/A
EB	1.26	0.03	0.26	1.26	1.26			N/A	N/A
NB	0.82	0.03	0.27	0.82	0.96			N/A	N/A

00:45 - 01:00

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker Probability of reaching or exceeding marker		Probability of exactly reaching marker
WB	0.05	0.00	0.00	0.05	0.05			N/A	N/A
SB	0.76	0.55	1.00	1.40	1.45			N/A	N/A
EB	1.01	0.35	1.03	1.15	1.59			N/A	N/A
NB	0.66	0.55	1.00	1.40	1.45			N/A	N/A

Junctions 10

ARCADY 10 - Roundabout Module

Version: 10.0.4.1693 © Copyright TRL Software Limited, 2021

For sales and distribution information, program advice and maintenance, contact TRL Software: +44 (0)1344 379777 software@trl.co.uk trlsoftware.com

The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

 $\label{lem:projects} \textbf{Filename}: Arcady_10_LantzShawDr_Opt2.j10 \\ \textbf{Path}: C:\Users\copel\OneDrive\Desktop\GRIFFIN\Projects\2023\2323 - East Hants Traffic Study\Analysis\Opt 2 - North IC\Arcady Barber 1.0 \\ \textbf{Path}: C:\Users\copel\OneDrive\Desktop\GRIFFIN\Projects\2023\2323 - East Hants Traffic Study\Analysis\Opt 2 - North IC\Arcady Barber 2.0 \\ \textbf{Path}: C:\Users\copel\OneDrive\Desktop\GRIFFIN\Projects\2023\2323 - East Hants Traffic Study\Analysis\Opt 2 - North IC\Arcady Barber 2.0 \\ \textbf{Path}: C:\Users\copel\OneDrive\Desktop\GRIFFIN\Projects\2023\2323 - East Hants Traffic Study\Analysis\Opt 2 - North IC\Arcady Barber 2.0 \\ \textbf{Path}: C:\Users\copel\Ope\Barber\C:\Users\Cope\Barber\C:\Cop$

Report generation date: 3/28/2024 9:19:15 AM

«Existing Geometry - 2053 Total Opt 2, PM Vols

»Intersection Network

»Legs

»Traffic Demand

»Origin-Destination Data

»Vehicle Mix

»Results

Summary of intersection performance

					A	AM V	ols							F	PM V	ols			
	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity	
								Existing (eometry	- 20	43 Tota	al Opt	2						
Leg WB		1.0	1.4	4.97	0.50	Α			48 %		0.4	1.8	3.26	0.31	Α			37 %	
Leg EB	D5	0.2	0.5	2.17	0.19	Α	3.75	A		D6		1.9	3.7	5.59	0.65	Α	5.14	Α	
Leg NB		0.4	1.5	3.11	0.26	Α			[Leg WB]		8.0	1.6	6.00	0.43	Α			[Leg EB]	
								Existing (eometry	- 20	53 Tota	al Opt	2						
Leg WB		1.9	2.9	7.53	0.66	Α			26 %		0.6	2.1	3.60	0.36	Α			24 %	
Leg EB	D7	0.3	0.9	2.23	0.21	Α	5.20	Α	D8 2.9	2.9	6.9	7.62	0.75	Α	6.77	Α			
Leg NB		0.4	1.1	3.19	0.27	Α			[Leg WB]	[Leg WB]	1.1	1.4	8.10	0.52	Α	1		[Leg EB]	

There are warnings associated with one or more model runs - see the 'Data Errors and Warnings' tables for each Analysis or Demand Set.

Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle. Intersection LOS and Intersection Delay are demand-weighted averages. Network Residual Capacity indicates the amount by which network flow could be increased before a user-definable threshold (see Analysis Options) is met.

File summary

File Description

Title	East Hants Traffic Study
Location	MEH - Trunk 2
Site number	10
Date	3/25/2024
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	
Analyst	SURFACEPRO7\copel
Description	Option 2

Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units
m	kph	Veh	Veh	perHour	s	-Min	perMin

Analysis Options

Vehicle length (m)	Calculate Queue Percentiles	Calculate detailed queueing delay	Show lane queues in feet / metres	Show all PICADY stream intercepts	Calculate residual capacity	Residual capacity criteria type	V/C Ratio Threshold	Average Delay threshold (s)	Queue threshold (PCE)	Use iterations with HCM roundabouts	Max number of iterations for roundabouts
5.75	✓				✓	Delay	0.85	36.00	20.00		500

Analysis Set Details

L	Name		Description	Include in report	Network flow scaling factor (%)	Network capacity scaling factor (%)
4	1 Existing Geometry	ı	Two lane entries	✓	100.000	100.000

ID	Scenario name	Time Period name	Description	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically
D8	2053 Total Opt 2	PM Vols	full build-out	PHF	00:00	01:00	15	✓

Existing Geometry - 2053 Total Opt 2, PM Vols

Data Errors and Warnings

Severity	Area	Item	Description				
Last Run	Last Run	Leg WB - Capacity	Pedestrian Crossing causes blocking on previous leg due to traffic queing to leave the intersection in 4 timesegment(s).				
Last Run	st n Last Run Leg NB - Capacity		Pedestrian Crossing causes blocking on previous leg due to traffic queing to leave the intersection in 4 timesegment				
Warning	Queue variations	Analysis Options	Queue percentiles may be unreliable if the mean queue in any time segment is very low or very high.				

Intersection Network

Intersections

Ir	ntersection	Name	Intersection type	Use circulating lanes	Leg order	Intersection Delay (s)	Intersection LOS
Г	10	LantzConn&ShawDr	Standard Roundabout		WB, EB, NB	6.77	Α

Intersection Network

Driving side	Lighting	Network residual capacity (%)	First leg reaching threshold	Network delay (s)	Network LOS
Right	Normal/unknown	24	Leg EB	6.77	Α

Legs

Legs

Leg	Name	Description	No yield line
WB	LantzWB		
EB	LantzEB		
NB	ShawNB		

Roundabout Geometry

Leg	V - Approach road half- width (m)	E - Entry width (m)	l' - Effective flare length (m)	R - Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Entry only	Exit only
WB	7.00	7.00	0.0	30.0	50.0	20.0		
EB	7.00	7.00	0.0	30.0	50.0	20.0		
NB	3.50	7.00	30.0	30.0	50.0	20.0		

Unsignalled Pedestrian Crossing Crossings

Leg	Space between crossing and intersection entry (Unsignalled Pedestrian Crossing) (PCE)	Vehicles queueing on exit (Unsignalled Pedestrian Crossing) (PCE)	Central Refuge	Crossing data type	Crossing length (entry side) (m)	Crossing time (entry side) (s)	Crossing length (exit side) (m)	Crossing time (exit side) (s)
WB	1.00	1.00	✓	Distance	7.00	5.00	4.00	2.86
EB	1.00	1.00	✓	Distance	7.00	5.00	4.00	2.86
NB	1.00	1.00	✓	Distance	4.00	2.86	4.00	2.86

Slope / Intercept / Capacity

Roundabout Slope and Intercept used in model

		•
Leg	Final slope	Final intercept (PCE/hr)
WB	0.723	2229
EB	0.723	2229
NB	0.666	1926

The slope and intercept shown above include any corrections and adjustments.

Traffic Demand

Vehicle mix varies over turn	Vehicle mix varies over entry	Vehicle mix source	PCE Factor for a Truck (PCE)
✓	✓	Truck Percentages	2.00

Demand overview (Traffic)

		•	•		
Leg	Linked leg	Profile type	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (%)
WB		PHF	✓	524	100.000
EB		PHF	✓	1268	100.000

NB		PHF	✓	434	100.000
----	--	-----	---	-----	---------

Peak Hour Factor Data (Traffic)

Leg	Hourly volume (Veh/hr)	Peak hour factor	Peak time segment
WB	524	0.92	SecondQuarter
EB	1268	0.92	SecondQuarter
NB	434	0.92	SecondQuarter

Demand overview (Pedestrians)

Leg	Profile type	Average pedestrian flow (Ped/hr)
WB	[PHF]	5.00
EB	[PHF]	5.00
NB	[PHF]	5.00

Peak Hour Factor Data (Pedestrians)

Leg	Hourly volume (Ped/hr)	Peak hour factor	Peak time segment
WB	5.00	1.00	SecondQuarter
EB	5.00	1.00	SecondQuarter
NB	5.00	1.00	SecondQuarter

Origin-Destination Data

Demand (Veh/hr)

	То				
		WB	EB	NB	
	WB	0	364	160	
From	EB	920	0	348	
	NB	73	361	0	

Vehicle Mix

Truck Percentages

	То				
From		WB	EB	NB	
	WB	5	5	5	
	EB	5	5	5	
	NB	5	5	5	

Results

Results Summary for whole modelled period

Leg	Max V/C Ratio	Max Delay (s)	Max Queue (Veh)	Max 95th percentile Queue (Veh)	Max LOS	Average Demand (Veh/hr)	Total Intersection Arrivals (Veh)
WB	0.36	3.60	0.6	2.1	А	524	524
EB	0.75	7.62	2.9	6.9	Α	1268	1268
NB	0.52	8.10	1.1	1.4	А	434	434

Main Results for each time segment

00:00 - 00:15

Leg	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Circulating flow (Veh/hr)	Pedestrian demand (Ped/hr)	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
WB	494	123	338	5.00	1650	0.299	492	930	0.0	0.4	3.105	Α
EB	1194	299	150	5.00	1899	0.629	1188	680	0.0	1.7	5.017	Α
NB	409	102	862	5.00	1030	0.397	406	476	0.0	0.7	5.744	Α

00:15 - 00:30

Leg	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Circulating flow (Veh/hr)	Pedestrian demand (Ped/hr)	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
WB	570	142	391	5.00	1570	0.363	569	1076	0.4	0.6	3.595	А
EB	1378	345	174	5.00	1841	0.749	1373	786	1.7	2.9	7.621	А

NB	472	118	996	5.00	913	0.517	470	551	0.7	1 1 1	8.101	Ι Δ	1
IND	412	110	990	3.00	913	0.517	470	551	0.7	1.1	0.101	A	

00:30 - 00:45

Leg	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Circulating flow (Veh/hr)	Pedestrian demand (Ped/hr)	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
WB	539	135	372	5.00	1599	0.337	539	1023	0.6	0.5	3.397	Α
EB	1305	326	165	5.00	1863	0.700	1307	747	2.9	2.4	6.496	Α
NB	447	112	948	5.00	955	0.468	447	523	1.1	0.9	7.108	Α

00:45 - 01:00

Leg	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Circulating flow (Veh/hr)	Pedestrian demand (Ped/hr)	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
WB	494	123	341	5.00	1646	0.300	494	938	0.5	0.4	3.124	Α
EB	1194	299	151	5.00	1897	0.630	1197	684	2.4	1.7	5.163	A
NB	409	102	869	5.00	1024	0.399	410	479	0.9	0.7	5.865	Α

Queue Variation Results for each time segment

00:00 - 00:15

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
WB	0.42	0.00	0.00	0.42	0.42			N/A	N/A
EB	1.67	0.05	0.56	4.27	6.59			N/A	N/A
NB	0.65	0.11	0.85	1.37	1.44			N/A	N/A

00:15 - 00:30

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
WB	0.57	0.03	0.25	0.57	0.57			N/A	N/A
EB	2.89	0.03	0.28	2.89	6.93			N/A	N/A
NB	1.05	0.03	0.26	1.05	1.05			N/A	N/A

00:30 - 00:45

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
WB	0.51	0.03	0.28	0.89	2.08			N/A	N/A
EB	2.39	0.03	0.26	2.39	2.39			N/A	N/A
NB	0.89	0.03	0.27	0.89	1.34			N/A	N/A

00:45 - 01:00

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
WB	0.43	0.00	0.00	0.43	0.43			N/A	N/A
EB	1.73	0.07	0.98	4.01	5.80			N/A	N/A
NB	0.67	0.11	0.85	1.37	1.44			N/A	N/A

Junctions 10

ARCADY 10 - Roundabout Module

Version: 10.0.4.1693 © Copyright TRL Software Limited, 2021

For sales and distribution information, program advice and maintenance, contact TRL Software: +44 (0)1344 379777 software@trl.co.uk trlsoftware.com

The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: Arcady_11_LantzHwy102NB_Opt2.j10

Path: C:\Users\cope\\OneDrive\Desktop\GRIFFIN\Projects\2023\2323 - East Hants Traffic Study\Analysis\Opt 2 - North IC\Arcady

Report generation date: 3/28/2024 9:24:35 AM

«Existing Geometry - 2053 Total Opt 2, PM Vols

- »Intersection Network
- »Legs
- »Traffic Demand
- »Origin-Destination Data
- »Vehicle Mix
- »Results

Summary of intersection performance

					P	AM V	ols							F	M V	ols		
	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity
								Existing (Seometry	- 20	43 Tot	al Opt 2	2					
Leg WB		2.6	9.8	11.91	0.73	В			26 %		1.3	1.7	8.17	0.57	Α			48 %
Leg EB	D5	0.3	1.3	3.89	0.23	Α	8.85	A		D6	1.1	1.5	6.17	0.52	Α	6.56	A	
Leg NB		0.1	0.5	3.87	0.11	Α			[Leg WB]		0.3	1.2	5.65	0.22	Α			[Leg WB]
								Existing (Seometry	- 20	53 Tota	al Opt 2	2					
Leg WB		4.7	25.8	19.06	0.84	С			11 %		1.6	2.5	9.21	0.62	Α			39 %
Leg EB	D7	0.3	1.3	3.89	0.23	Α	13.69	В		D8	1.3	1.8	6.95	0.57	Α	7.28	A	
Leg NB		0.1	0.5	3.87	0.11	Α			[Leg WB]		0.3	1.3	6.13	0.23	Α			[Leg WB]

There are warnings associated with one or more model runs - see the 'Data Errors and Warnings' tables for each Analysis or Demand Set.

Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle. Intersection LOS and Intersection Delay are demand-weighted averages. Network Residual Capacity indicates the amount by which network flow could be increased before a user-definable threshold (see Analysis Options) is met.

File summary

File Description

Title	East Hants Traffic Study
Location	MEH - Trunk 2
Site number	11
Date	3/25/2024
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	
Analyst	SURFACEPRO7\copel
Description	Option 2

Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units
m	kph	Veh	Veh	perHour	s	-Min	perMin

Analysis Options

Vehicle length (m)	Calculate Queue Percentiles	Calculate detailed queueing delay	Show lane queues in feet / metres	Show all PICADY stream intercepts	Calculate residual capacity	Residual capacity criteria type	V/C Ratio Threshold	Average Delay threshold (s)	Queue threshold (PCE)	Use iterations with HCM roundabouts	Max number of iterations for roundabouts
5.75	✓				✓	Delay	0.85	36.00	20.00		500

Analysis Set Details

ID	Name	Description	Include in report	Network flow scaling factor (%)	Network capacity scaling factor (%)
A1	Existing Geometry	Single lane entries	✓	100.000	100.000

ID	Scenario name	Time Period name	Description	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically
D8	2053 Total Opt 2	PM Vols	full build-out	PHF	00:00	01:00	15	✓

Existing Geometry - 2053 Total Opt 2, PM Vols

Data Errors and Warnings

Severity	Area	Item	Description					
Last Run	Last Run	Leg SB - Capacity	Pedestrian Crossing causes blocking on previous leg due to traffic queing to leave the intersection in 4 timesegment(s).					
Warning	Warning Queue variations Analysis Options		Queue percentiles may be unreliable if the mean queue in any time segment is very low or very high.					

Intersection Network

Intersections

Intersection Name Intersection type		Use circulating lanes	Leg order	Intersection Delay (s)	Intersection LOS	
11	LantzConn&Hwy102NB	Standard Roundabout		WB, SB, EB, NB	7.28	Α

Intersection Network

Driving side	Lighting	Network residual capacity (%)	First leg reaching threshold	Network delay (s)	Network LOS
Right	Normal/unknown	39	Leg WB	7.28	Α

Legs

Legs

Leg	Name	Description	No yield line
WB	LantzWB		
SB	OnRampSB		
EB	LantzEB		
NB	OffRampNB		

Roundabout Geometry

Leg	V - Approach road half- width (m)	E - Entry width (m)	l' - Effective flare length (m)	R - Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Entry only	Exit only
WB	3.50	4.00	30.0	30.0	45.0	20.0		
SB								✓
EB	3.50	4.00	30.0	30.0	45.0	20.0		
NB	3.50	4.00	30.0	30.0	45.0	20.0	✓	

Bypass

Leg	Leg has bypass	Bypass utilisation (%)
WB	✓	100
SB		
EB		
NB	✓	100

Unsignalled Pedestrian Crossing Crossings

	g							
Leg	Space between crossing and intersection entry (Unsignalled Pedestrian Crossing) (PCE)	Vehicles queueing on exit (Unsignalled Pedestrian Crossing) (PCE)	Central Refuge	Crossing data type	Crossing length (entry side) (m)	Crossing time (entry side) (s)	Crossing length (exit side) (m)	Crossing time (exit side) (s)
WB	1.00	1.00	✓	Distance	4.00	2.86	4.00	2.86
SB		1.00	✓	Distance			4.00	2.86
EB	1.00	1.00	✓	Distance	4.00	2.86	4.00	2.86
NB	1.00	1.00	✓	Distance	4.00	2.86	4.00	2.86

Slope / Intercept / Capacity

Roundabout Slope and Intercept used in model

Leg	Final slope	Final intercept (PCE/hr)
WB	0.558	1266
SB		
EB	0.558	1266
NB	0.558	1266

The slope and intercept shown above include any corrections and adjustments.

Traffic Demand

Vehicle mix varies over turn	Vehicle mix varies over entry	Vehicle mix source	PCE Factor for a Truck (PCE)
✓	✓	Truck Percentages	2.00

Demand overview (Traffic)

Leg	Linked leg	Profile type	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (%)
WB		PHF	✓	725	100.000
SB					
EB		PHF	✓	635	100.000
NB		PHF	✓	1030	100.000

Peak Hour Factor Data (Traffic)

Leg	Hourly volume (Veh/hr)	Peak hour factor	Peak time segment
WB	725	0.92	SecondQuarter
SB			
EB	635	0.92	SecondQuarter
NB	1030	0.92	SecondQuarter

Demand overview (Pedestrians)

Leg	Profile type	Average pedestrian flow (Ped/hr)
WB	[PHF]	5.00
SB	[PHF]	5.00
EB	[PHF]	5.00
NB	[PHF]	5.00

Peak Hour Factor Data (Pedestrians)

Leg	Hourly volume (Ped/hr)	Peak hour factor	Peak time segment				
WB	5.00	1.00	SecondQuarter				
SB	5.00	1.00	SecondQuarter				
EB	5.00	1.00	SecondQuarter				
NB	5.00	1.00	SecondQuarter				

Origin-Destination Data

Demand (Veh/hr)

			То		
		WB	SB	EB	NB
	WB	0	154	571	0
From	SB	0	0	0	0
	EB	481	154	0	0
	NB	867	2	161	0

Vehicle Mix

Truck Percentages

		To WB SB EB					
		WB	SB	EB	NB		
	WB	5	5	5	5		
From	SB	5	5	5	5		
	EB	5	5	5	5		
	NB	5	5	5	5		

Results

Results Summary for whole modelled period

Leg Ma WB SB EB	Max V/C Ratio	Max Delay (s)	Max Queue (Veh)	Max 95th percentile Queue (Veh)	Max LOS	Average Demand (Veh/hr)	Total Intersection Arrivals (Veh)
WB	0.62	9.21	1.6	2.5	Α	725	571
SB							
EB	0.57	6.95	1.3	1.8	Α	635	635
NB	0.23	6.13	0.3	1.3	А	1030	163

Main Results for each time segment

00:00 - 00:15

Leg	Total Demand (Veh/hr)	Intersection demand (Veh/hr)	Intersection Arrivals (Veh)	Bypass demand (Veh/hr)	Bypass exit flow (Veh/hr)	Circulating flow (Veh/hr)	Pedestrian demand (Ped/hr)	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
WB	683	538	134	145	817	297	5.00	1035	0.520	534	450	0.0	1.1	7.119	Α
SB						684	5.00				146				
EB	598	598	150	0	0	0	5.00	1205	0.496	594	684	0.0	1.0	5.892	Α
NB	970	154	38	817	0	594	5.00	830	0.185	153	0	0.0	0.2	5.312	А

00:15 - 00:30

Leg	Total Demand (Veh/hr)	Intersection demand (Veh/hr)	Intersection Arrivals (Veh)	Bypass demand (Veh/hr)	Bypass exit flow (Veh/hr)	Circulating flow (Veh/hr)	Pedestrian demand (Ped/hr)	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
WB	788	621	155	167	942	344	5.00	1007	0.616	619	522	1.1	1.6	9.214	Α
SB						793	5.00				169				
EB	690	690	173	0	0	0	5.00	1205	0.573	689	793	1.0	1.3	6.947	А
NB	1120	177	44	942	0	689	5.00	764	0.232	177	0	0.2	0.3	6.131	А

00:30 - 00:45

Leg	Total Demand (Veh/hr)	Intersection demand (Veh/hr)	Intersection Arrivals (Veh)	Bypass demand (Veh/hr)	Bypass exit flow (Veh/hr)	Circulating flow (Veh/hr)	Pedestrian demand (Ped/hr)	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
WB	746	588	147	158	892	326	5.00	1018	0.577	588	495	1.6	1.4	8.400	Α
SB						754	5.00				161				
EB	653	653	163	0	0	0	5.00	1205	0.542	654	754	1.3	1.2	6.535	А
NB	1060	168	42	892	0	654	5.00	788	0.213	168	0	0.3	0.3	5.805	А

00:45 - 01:00

Leg	Total Demand (Veh/hr)	Intersection demand (Veh/hr)	Intersection Arrivals (Veh)	Bypass demand (Veh/hr)	Bypass exit flow (Veh/hr)	Circulating flow (Veh/hr)	Pedestrian demand (Ped/hr)	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
WB	683	538	134	145	817	299	5.00	1034	0.520	539	454	1.4	1.1	7.292	Α
SB						691	5.00				147				
EB	598	598	150	0	0	0	5.00	1205	0.496	599	691	1.2	1.0	5.946	Α
NB	970	154	38	817	0	599	5.00	826	0.186	154	0	0.3	0.2	5.355	Α

Queue Variation Results for each time segment

00:00 - 00:15

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
WB	1.06	0.11	0.99	1.72	2.01			N/A	N/A
SB									
EB	0.97	0.12	0.96	1.44	1.79			N/A	N/A
NB	0.23	0.00	0.00	0.23	0.23			N/A	N/A

00:15 - 00:30

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
WB	1.57	0.03	0.27	1.57	1.80			N/A	N/A
SB									
EB	1.32	0.03	0.26	1.32	1.32			N/A	N/A
NB	0.30	0.03	0.25	0.46	0.48			N/A	N/A

00:30 - 00:45

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
WB	1.39	0.03	0.26	1.39	1.39			N/A	N/A
SB									
EB	1.20	0.03	0.26	1.20	1.20			N/A	N/A
NB	0.27	0.03	0.30	0.98	1.31			N/A	N/A

00:45 - 01:00

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
WB	1.10	0.09	0.97	1.87	2.49			N/A	N/A
SB									
EB	1.00	0.16	1.00	1.40	1.75			N/A	N/A
NB	0.23	0.00	0.00	0 0.23 0.23		N/A	N/A		

Junctions 10

ARCADY 10 - Roundabout Module

Version: 10.0.4.1693

© Copyright TRL Software Limited, 2021

For sales and distribution information, program advice and maintenance, contact TRL Software: +44 (0)1344 379777 software@trl.co.uk trlsoftware.com

The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: Arcady_12_LantzHwy102SB_Opt2.j10
Path: C:\Users\copel\OneDrive\Desktop\GRIFFIN\Projects\2023\2323 - East Hants Traffic Study\Analysis\Opt 2 - North IC\Arcady Report generation date: 3/28/2024 9:28:37 AM

«Existing Geometry - 2053 Total Opt 2, PM Vols

»Intersection Network

»Legs »Traffic Demand

»Origin-Destination Data »Vehicle Mix

»Results

Summary of intersection performance

					P	AM V	ols							F	M V	ols		
	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity
								Existing (Geometry	- 20	43 Tota	al Opt	2					
Leg WB		2.8	10.6	11.32	0.74	В			29 %		1.6	2.5	7.75	0.62	Α			29 %
Leg SB	D5	0.3	1.3	6.64	0.23	Α	9.86	A	D6	1.3	1.8	10.80	0.58	В	9.06	A		
Leg EB		0.2	0.9	7.84	0.19	Α			[Leg WB]		0.4	1.4	8.69	0.29	Α			[Leg SB]
								Existing 0	Geometry	- 20	53 Tota	al Opt	2					
Leg WB		4.9	26.8	17.64	0.85	С			13 %		1.9	3.7	8.69	0.66	Α			16 %
Leg SB	D7	0.4	1.2	7.73	0.27	Α	14.70	В	D8 2	2.1	8.6	14.86	0.69	В	11.36	В		
Leg EB		0.3	1.3	9.93	0.23	Α			[Leg WB]	0.5	1.8	10.40	0.33	В	<u> </u>		[Leg SB]	

There are warnings associated with one or more model runs - see the 'Data Errors and Warnings' tables for each Analysis or Demand Set.

Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle. Intersection LOS and Intersection Delay are demand-weighted averages. Network Residual Capacity indicates the amount by which network flow could be increased before a user-definable threshold (see Analysis Options) is met.

File summary

File Description

Title	East Milford TIS
Location	MEH - Trunk 2
Site number	2
Date	4/25/2023
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	
Analyst	SURFACEPRO7\copel
Description	Option 2

Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units
m	kph	Veh	Veh	perHour	s	-Min	perMin

Analysis Options

Vehicle length (m)	Calculate Queue Percentiles	Calculate detailed queueing delay	Show lane queues in feet / metres	Show all PICADY stream intercepts	Calculate residual capacity	Residual capacity criteria type	V/C Ratio Threshold	Average Delay threshold (s)	Queue threshold (PCE)	Use iterations with HCM roundabouts	Max number of iterations for roundabouts
5.75	✓				✓	Delay	0.85	36.00	20.00		500

Analysis Set Details

ID	Name	Description	Include in report	Network flow scaling factor (%)	Network capacity scaling factor (%)
A1	Existing Geometry	Single lane entries	✓	100.000	100.000

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically
D8	2053 Total Opt 2	PM Vols	PHF	00:00	01:00	15	✓

Existing Geometry - 2053 Total Opt 2, PM Vols

Data Errors and Warnings

Severity	Area	Item	Description					
Last Run	Run Last Run Leg EB - Capacity		Pedestrian Crossing causes blocking on previous leg due to traffic queing to leave the intersection in 1 timesegment(
Last Run	ast Run Leg NB - Capacity		Pedestrian Crossing causes blocking on previous leg due to traffic queing to leave the intersection in 2 timesegment(s).					
Warning	Warning Queue variations Analysis Options		Queue percentiles may be unreliable if the mean queue in any time segment is very low or very high.					

Intersection Network

Intersections

Intersection	Name	Intersection type	Use circulating lanes	Leg order	Intersection Delay (s)	Intersection LOS
12	LantzConn&Hwy102SB	Standard Roundabout		WB, SB, EB, NB	11.36	В

Intersection Network

Driving side Lighting		Lighting	Network residual capacity (%)	First leg reaching threshold	Network delay (s)	Network LOS
	Right	Normal/unknown	16	Lea SB	11.36	В

Legs

Legs

Leg	Name	Description	No yield line
WB	LantzWB		
SB	OffRampSB		
EB	LantzEB		
NB	OnRampSB		

Roundabout Geometry

Leg	V - Approach road half- width (m)	E - Entry width (m)	l' - Effective flare length (m)	R - Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Entry only	Exit only
WB	3.50	4.00	30.0	30.0	45.0	20.0		
SB	3.50	4.00	30.0	30.0	45.0	20.0	✓	
EB	3.50	4.00	30.0	30.0	45.0	20.0		
NB								✓

Bypass

Leg	Leg has bypass	Bypass utilisation (%)
WB		
SB	✓	100
EB	✓	100
NB	✓	100

Unsignalled Pedestrian Crossing Crossings

	<u> </u>							
Leg Space between crossing and intersection entry (Unsignalled Pedestrian Crossing) (PCE)		Vehicles queueing on exit (Unsignalled Pedestrian Crossing) (PCE)	Central Refuge	Crossing data type	Crossing length (entry side) (m)	Crossing time (entry side) (s)	Crossing length (exit side) (m)	Crossing time (exit side) (s)
WB	1.00	1.00	✓	Distance	4.00	2.86	4.00	2.86
SB	1.00	1.00	✓	Distance	4.00	2.86	4.00	2.86
EB	1.00	1.00	✓	Distance	4.00	2.86	4.00	2.86
NB		1.00	✓	Distance			4.00	2.86

Slope / Intercept / Capacity

Roundabout Slope and Intercept used in model

Leg Final slope		Final intercept (PCE/hr)
WB	0.558	1266
SB	0.558	1266
EB	0.558	1266
NR		

The slope and intercept shown above include any corrections and adjustments.

Traffic Demand

Vehicle mix varies over turn	Vehicle mix varies over entry	Vehicle mix source	PCE Factor for a Truck (PCE)	
✓	✓	Truck Percentages	2.00	

Demand overview (Traffic)

Leg	Linked leg	Profile type	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (%)
WB		PHF	✓	732	100.000
SB		PHF	✓	642	100.000
EB		PHF	✓	309	100.000
NB					

Peak Hour Factor Data (Traffic)

Leg	Hourly volume (Veh/hr)	Peak hour factor	Peak time segment
WB	732	0.92	SecondQuarter
SB	642	0.92	SecondQuarter
EB	309	0.92	SecondQuarter
NB			

Demand overview (Pedestrians)

Leg Profile type		Average pedestrian flow (Ped/hr)		
WB	[PHF]	5.00		
SB	[PHF]	5.00		
EB	[PHF]	5.00		
NB	[PHF]	5.00		

Peak Hour Factor Data (Pedestrians)

Leg	Hourly volume (Ped/hr)	Peak hour factor	Peak time segment	
WB	5.00	1.00	SecondQuarter	
SB	5.00	1.00	SecondQuarter	
EB	5.00	1.00	SecondQuarter	
NB	5.00	1.00	SecondQuarter	

Origin-Destination Data

Demand (Veh/hr)

	То					
		WB	SB	EB	NB	
	WB	0	0	160	572	
From	SB	481	0	161	0	
	EB	154	0	0	155	
	NB	0	0	0	0	

Vehicle Mix

Truck Percentages

	То									
		WB	SB	EB	NB					
	WB	5	5	5	5					
From	SB	5	5	5	5					
	EB	5	5	5	5					
	NB	5	5	5	5					

Results

Results Summary for whole modelled period

			onou ponou				
Leg	Max V/C Ratio	Max Delay (s)	Max Queue (Veh)	Max 95th percentile Queue (Veh)	Max LOS	Average Demand (Veh/hr)	Total Intersection Arrivals (Veh)
WB	0.66	8.69	1.9	3.7	Α	732	732
SB	0.69	14.86	2.1	8.6	В	642	481
EB	0.33	10.40	0.5	1.8	В	309	154
NB							

Main Results for each time segment

00:00 - 00:15

00:00	- 00:15														
Leg	Total Demand (Veh/hr)	Intersection demand (Veh/hr)	Intersection Arrivals (Veh)	Bypass demand (Veh/hr)	Bypass exit flow (Veh/hr)	Circulating flow (Veh/hr)	Pedestrian demand (Ped/hr)	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
WB	690	690	172	0	0	0	5.00	1205	0.572	684	592	0.0	1.3	6.841	Α
SB	605	453	113	152	0	684	5.00	820	0.553	448	0	0.0	1.2	9.574	Α
EB	291	145	36	146	152	983	5.00	609	0.238	144	150	0.0	0.3	7.727	Α
NB						592	5.00				535				

00:15 - 00:30

Leg	Total Demand (Veh/hr)	Intersection demand (Veh/hr)	Intersection Arrivals (Veh)	Bypass demand (Veh/hr)	Bypass exit flow (Veh/hr)	Circulating flow (Veh/hr)	Pedestrian demand (Ped/hr)	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
WB	796	796	199	0	0	0	5.00	1205	0.660	793	686	1.3	1.9	8.686	Α
SB	698	523	131	175	0	793	5.00	758	0.690	519	0	1.2	2.1	14.857	В
EB	336	167	42	168	175	1139	5.00	512	0.327	167	173	0.3	0.5	10.403	В
NB						686	5.00				620				

00:30 - 00:45

Leg	Total Demand (Veh/hr)	Intersection demand (Veh/hr)	Intersection Arrivals (Veh)	Bypass demand (Veh/hr)	Bypass exit flow (Veh/hr)	Circulating flow (Veh/hr)	Pedestrian demand (Ped/hr)	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
WB	753	753	188	0	0	0	5.00	1205	0.625	754	655	1.9	1.7	7.991	A
SB	661	495	124	166	0	754	5.00	780	0.634	496	0	2.1	1.8	12.749	В
EB	318	158	40	159	166	1085	5.00	545	0.291	159	165	0.5	0.4	9.319	Α
NB						655	5.00				589				

00:45 - 01:00

Leg	Total Demand (Veh/hr)	Intersection demand (Veh/hr)	Intersection Arrivals (Veh)	Bypass demand (Veh/hr)	Bypass exit flow (Veh/hr)	Circulating flow (Veh/hr)	Pedestrian demand (Ped/hr)	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
WB	690	690	172	0	0	0	5.00	1205	0.572	691	601	1.7	1.4	7.016	Α
SB	605	453	113	152	0	691	5.00	816	0.555	455	0	1.8	1.3	10.038	В
EB	291	145	36	146	152	995	5.00	601	0.241	145	151	0.4	0.3	7.903	А
NB						601	5.00				540				

Queue Variation Results for each time segment

00:00 - 00:15

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
WB	1.31	0.08	1.03	2.56	3.41			N/A	N/A
SB	1.21	0.09	1.02	2.12	2.84			N/A	N/A
EB	0.31	0.00	0.00	0.31	0.31			N/A	N/A
NB									

00:15 - 00:30

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
WB	1.89	0.03	0.27	1.89	2.98			N/A	N/A
SB	2.12	0.03	0.29	2.12	8.63			N/A	N/A
EB	0.48	0.03	0.26	0.48	0.49			N/A	N/A
NB									

00:30 - 00:45

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
WB	1.70	0.03	0.26	1.70	1.70			N/A	N/A
SB	1.79	0.03	0.27	1.79	1.79			N/A	N/A
EB	0.42	0.03	0.29	1.17	1.82			N/A	N/A
NB									

00:45 - 01:00

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
WB	1.36	0.08	1.03	2.73	3.70			N/A	N/A
SB	1.28	0.05	0.64	2.94	4.40			N/A	N/A
EB	0.32	0.00	0.00	0.32	0.32			N/A	N/A
NB									

Junctions 10

ARCADY 10 - Roundabout Module

Version: 10.0.4.1693 © Copyright TRL Software Limited, 2021

For sales and distribution information, program advice and maintenance, contact TRL Software: +44 (0)1344 379777 software@trl.co.uk trlsoftware.com

The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: Arcady 22 Trunk2NewConnector.j10

Path: C:\Users\copel\OneDrive\Desktop\GRIFFIN\Projects\2023\2323 - East Hants Traffic Study\Analysis\Opt 2 - North IC\Arcady

Report generation date: 3/28/2024 9:31:59 AM

«Future Geometry - 2053 Total Opt 2, PM Vols

- »Intersection Network
- »Legs
- »Traffic Demand
- »Origin-Destination Data
- »Vehicle Mix
- »Results

Summary of intersection performance

					-	AM V	ols							F	M V	ols		
	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity
		Future Geometry - 2053 Total Opt 2																
Leg SB		0.4	1.5	7.33	0.29	Α			18 %		0.4	1.7	6.18	0.30	Α			24 %
Leg EB	D7	0.0	0.5	3.73	0.01	Α	12.56	В		D8	0.0	0.5	4.03	0.03	Α	8.52	Α	
Leg NB		3.6	18.7	16.01	0.80	С			[Leg NB]		2.7	11.3	13.14	0.74	В			[Leg NB]

There are warnings associated with one or more model runs - see the 'Data Errors and Warnings' tables for each Analysis or Demand Set.

Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle. Intersection LOS and Intersection Delay are demand-weighted averages. Network Residual Capacity indicates the amount by which network flow could be increased before a user-definable threshold (see Analysis Options) is met.

File summary

File Description

Title	East Hants Traffic Study
Location	MEH - Trunk 2
Site number	22
Date	3/25/2024
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	
Analyst	SURFACEPRO7\copel
Description	Option 2

Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units
m	kph	Veh	Veh	perHour	s	-Min	perMin

Analysis Options

•											
Vehicle length (m)	Calculate Queue Percentiles	Calculate detailed queueing delay	Show lane queues in feet / metres	Show all PICADY stream intercepts	Calculate residual capacity	Residual capacity criteria type	V/C Ratio Threshold	Average Delay threshold (s)	Queue threshold (PCE)	Use iterations with HCM roundabouts	Max number of iterations for roundabouts
5.75	✓				✓	Delay	0.85	36.00	20.00		500

Analysis Set Details

ID	Name	Include in report	Network flow scaling factor (%)	Network capacity scaling factor (%)
A1	Future Geometry	✓	100.000	100.000

Demand Set Details

ID	Scenario name	Time Period name	Description	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically
D8	2053 Total Opt 2	PM Vols	full build-out	PHF	16:00	17:00	15	✓

Future Geometry - 2053 Total Opt 2, PM Vols

Data Errors and Warnings

Severity	Area	Item	Description
Warning	arning Queue variations Analysis Options		Queue percentiles may be unreliable if the mean queue in any time segment is very low or very high.

Intersection Network

Intersections

Intersection	Name	Intersection type	Use circulating lanes	Leg order	Intersection Delay (s)	Intersection LOS
22	Trunk2NewNorthConnector	Standard Roundabout		SB, EB, NB	8.52	Α

Intersection Network

Driving side	Lighting	Network residual capacity (%)	First leg reaching threshold	Network delay (s)	Network LOS	
Right	Normal/unknown	24	Leg NB	8.52	Α	

Legs

Legs

Leg	Name	Description	No yield line
SB	Tk2SB		
EB	NewConnectorEB		
NB	Tk2NB		

Roundabout Geometry

Leg	V - Approach road half- width (m)	E - Entry width (m)	l' - Effective flare length (m)	R - Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Entry only	Exit only
SB	3.50	3.50	0.0	30.0	50.0	20.0		
EB	3.50	3.50	0.0	30.0	50.0	20.0		
NB	3.50	3.50	0.0	30.0	50.0	20.0		

Bypass

Leg	Leg has bypass	Bypass utilisation (%)
SB		
EB	✓	100
NB		

Unsignalled Pedestrian Crossing Crossings

Leg	Space between crossing and intersection entry (Unsignalled Pedestrian Crossing) (PCE)	Vehicles queueing on exit (Unsignalled Pedestrian Crossing) (PCE)	Central Refuge	Crossing data type	Crossing length (entry side) (m)	Crossing time (entry side) (s)	Crossing length (exit side) (m)	Crossing time (exit side) (s)
SB	1.00	1.00	✓	Distance	7.00	5.00	4.00	2.86
EB	1.00	1.00	✓	Distance	4.00	2.86	4.00	2.86
NB	3 1.00 1.00		✓	Distance	7.00	5.00	4.00	2.86

Slope / Intercept / Capacity

Roundabout Slope and Intercept used in model

Leg	Final slope	Final intercept (PCE/hr)
SB	0.512	1115
EB	0.512	1115
NB	0.512	1115

The slope and intercept shown above include any corrections and adjustments

Traffic Demand

Vehicle mix varies over turn	Vehicle mix varies over entry	Vehicle mix source	PCE Factor for a Truck (PCE)
✓	✓	Truck Percentages	2.00

Demand overview (Traffic)

Leg	Linked leg	Profile type	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (%)		
SB		PHF	✓	234	100.000		
EB		PHF	✓	582	100.000		

NB	PHF	✓	684	100.000
----	-----	---	-----	---------

Peak Hour Factor Data (Traffic)

Leg	Hourly volume (Veh/hr)	Peak hour factor	Peak time segment		
SB	234	0.92	SecondQuarter		
EB	582	0.92	SecondQuarter		
NB	684	0.92	SecondQuarter		

Demand overview (Pedestrians)

Leg	Profile type	Average pedestrian flow (Ped/hr)
SB	[PHF]	5.00
EB	[PHF]	5.00
NB	[PHF]	5.00

Peak Hour Factor Data (Pedestrians)

Leg	Hourly volume (Ped/hr)	Peak hour factor	Peak time segment		
SB	5.00	1.00	SecondQuarter		
EB	5.00	1.00	SecondQuarter		
NB	5.00	1.00	SecondQuarter		

Origin-Destination Data

Demand (Veh/hr)

		To SB EB NB SB 0 5 229								
		SB	EB	NB						
From	SB	0	5	229						
From	EB	25	0	557						
	NB	333	351	0						

Vehicle Mix

Truck Percentages

		Т	o	
		SB	EB	NB
From	SB	5	5	5
FIOIII	n 🗀	5	5	5
	NB	5	5	5

Results

Results Summary for whole modelled period

Leg	Max V/C Ratio	Max Delay (s)	Max Queue (Veh)	Max 95th percentile Queue (Veh)	Max LOS	Average Demand (Veh/hr)	Total Intersection Arrivals (Veh)						
SB	0.30	6.18	0.4	1.7	Α	234	234						
EB	0.03	4.03	0.0	0.5	Α	582	25						
NB	0.74	13.14	2.7	11.3	В	684	684						

Main Results for each time segment

16:00 - 16:15

Leg	Total Demand (Veh/hr)	Intersection demand (Veh/hr)	Intersection Arrivals (Veh)	Bypass demand (Veh/hr)	Bypass exit flow (Veh/hr)	Circulating flow (Veh/hr)	Pedestrian demand (Ped/hr)	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
SB	220	220	55	0	0	327	5.00	870	0.253	219	334	0.0	0.3	5.516	Α
EB	548	24	6	525	0	214	5.00	942	0.025	23	332	0.0	0.0	3.919	Α
NB	644	644	161	0	525	23	5.00	1022	0.631	638	214	0.0	1.7	9.228	Α

16:15 - 16:30

Leg	Total Demand (Veh/hr)	Intersection demand (Veh/hr)	Intersection Arrivals (Veh)	Bypass demand (Veh/hr)	Bypass exit flow (Veh/hr)	Circulating flow (Veh/hr)	Pedestrian demand (Ped/hr)	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
SB	254	254	64	0	0	379	5.00	836	0.304	254	387	0.3	0.4	6.183	A
EB	633	27	7	605	0	249	5.00	921	0.030	27	385	0.0	0.0	4.027	Α
NB	743	743	186	0	605	27	5.00	1009	0.737	739	249	1.7	2.7	13.143	В

16:30 - 16:45

Leg	Total Demand (Veh/hr)	Intersection demand (Veh/hr)	Intersection Arrivals (Veh)	Bypass demand (Veh/hr)	Bypass exit flow (Veh/hr)	Circulating flow (Veh/hr)	Pedestrian demand (Ped/hr)	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
SB	241	241	60	0	0	362	5.00	848	0.284	241	369	0.4	0.4	5.937	Α
EB	599	26	6	573	0	236	5.00	929	0.028	26	367	0.0	0.0	3.987	Α
NB	704	704	176	0	573	26	5.00	1014	0.694	705	236	2.7	2.3	11.724	В

16:45 - 17:00

Leg	Total Demand (Veh/hr)	Intersection demand (Veh/hr)	Intersection Arrivals (Veh)	Bypass demand (Veh/hr)	Bypass exit flow (Veh/hr)	Circulating flow (Veh/hr)	Pedestrian demand (Ped/hr)	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
SB	220	220	55	0	0	332	5.00	867	0.254	221	338	0.4	0.3	5.568	Α
EB	548	24	6	525	0	216	5.00	941	0.025	24	337	0.0	0.0	3.923	Α
NB	644	644	161	0	525	24	5.00	1021	0.631	647	216	2.3	1.8	9.688	Α

Queue Variation Results for each time segment

16:00 - 16:15

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
SB	0.34	0.00	0.00	0.34	0.34			N/A	N/A
EB	0.03	0.03	0.25	0.45	0.48			N/A	N/A
NB	1.66	0.08	1.10	3.65	4.99			N/A	N/A

16:15 - 16:30

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
SB	0.43	0.03	0.25	0.46	0.48			N/A	N/A
EB	0.03	0.00	0.00	0.03	0.03			N/A	N/A
NB	2.66	0.03	0.30	2.66	11.28			N/A	N/A

16:30 - 16:45

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
SB	0.40	0.03	0.30	1.17	1.75			N/A	N/A
EB	0.03	0.00	0.00	0.03	0.03			N/A	N/A
NB	2.35	0.03	0.27	2.35	2.35			N/A	N/A

16:45 - 17:00

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
SB	0.34	0.00	0.00	0.34	0.34			N/A	N/A
EB	0.03	0.00	0.00	0.03	0.03			N/A	N/A
NB	1.76	0.05	0.53	4.57	7.08			N/A	N/A

Junctions 10

ARCADY 10 - Roundabout Module

Version: 10.0.4.1693 © Copyright TRL Software Limited, 2021

For sales and distribution information, program advice and maintenance, contact TRL Software: +44 (0)1344 379777 software@trl.co.uk trlsoftware.com

The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: Arcady_23_NewConnlCHwy102NB.j10

Path: C:\Users\copel\OneDrive\Desktop\GRIFFIN\Projects\2023\2323 - East Hants Traffic Study\Analysis\Opt 2 - North IC\Arcady

Report generation date: 3/28/2024 9:35:05 AM

«Future Geometry - 2053 Total Opt 2, PM Vols

»Intersection Network

»Legs

»Traffic Demand

»Origin-Destination Data

»Vehicle Mix

»Results

Summary of intersection performance

					A	AM V	ols							F	M V	ols		
	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity
								Future G	eometry	- 205	3 Tota	l Opt 2						
Leg WB		0.6	1.7	4.93	0.39	Α			142 %		0.3	1.4	3.97	0.25	Α			287 %
Leg EB	D5	0.0	0.5	3.11	0.04	Α	4.46	A		D6	0.1	0.5	3.40	0.12	Α	3.53	A	
Leg NB		0.0	0.5	3.06	0.00	Α			[Leg WB]		0.0	0.5	3.22	0.00	Α			[Leg WB]

There are warnings associated with one or more model runs - see the 'Data Errors and Warnings' tables for each Analysis or Demand Set.

Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle. Intersection LOS and Intersection Delay are demand-weighted averages. Network Residual Capacity indicates the amount by which network flow could be increased before a user-definable threshold (see Analysis Options) is met.

File summary

File Description

Title	East Hants Traffic Study
Location	MEH - Trunk 2
Site number	23
Date	3/26/2024
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	
Analyst	SURFACEPRO7\copel
Description	Option 2

Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units
m	kph	Veh	Veh	perHour	s	-Min	perMin

Analysis Options

Vehicle length (m)	Calculate Queue Percentiles	Calculate detailed queueing delay	Show lane queues in feet / metres	Show all PICADY stream intercepts	Calculate residual capacity	Residual capacity criteria type	V/C Ratio Threshold	Average Delay threshold (s)	Queue threshold (PCE)	Use iterations with HCM roundabouts	Max number of iterations for roundabouts
5.75	✓				✓	Delay	0.85	36.00	20.00		500

Analysis Set Details

ID	Name	Description	Include in report	Network flow scaling factor (%)	Network capacity scaling factor (%)
A1	Future Geometry	Single lane entries	✓	100.000	100.000

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically	
D6	2053 Total Opt 2	PM Vols	PHF	00:00	01:00	15	✓	

Future Geometry - 2053 Total Opt 2, PM Vols

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Queue variations	Analysis Options	Queue percentiles may be unreliable if the mean queue in any time segment is very low or very high.

Intersection Network

Intersections

Intersection	Name	Intersection type	Use circulating lanes	Leg order	Intersection Delay (s)	Intersection LOS
23	NewConn&Hwy102NB	Standard Roundabout		WB, SB, EB, NB	3.53	Α

Intersection Network

Driving side	Lighting	Network residual capacity (%)	First leg reaching threshold	Network delay (s)	Network LOS
Right	Normal/unknown	287	Leg WB	3.53	A

Legs

Legs

Leg	Name	Description	No yield line
WB LantzWB			
SB	OnRampSB		
EB LantzEB			
NB	OffRampNB		

Roundabout Geometry

	-							
Leg	V - Approach road half- width (m)	E - Entry width (m)	l' - Effective flare length (m)	R - Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Entry only	Exit only
WB	3.50	4.00	30.0	30.0	45.0	20.0		
SB								✓
EB	3.50	4.00	30.0	30.0	45.0	20.0		
NB	3.50	4.00	30.0	30.0	45.0	20.0	✓	

Bypass

Leg	Leg has bypass	Bypass utilisation (%)
WB	✓	100
SB		
EB		
NB	✓	100

Unsignalled Pedestrian Crossing Crossings

Leg	Space between crossing and intersection entry (Unsignalled Pedestrian Crossing) (PCE)	Vehicles queueing on exit (Unsignalled Pedestrian Crossing) (PCE)	Central Refuge	Crossing data type	Crossing length (entry side) (m)	Crossing time (entry side) (s)	Crossing length (exit side) (m)	Crossing time (exit side) (s)
WB	1.00	1.00	✓	Distance	4.00	2.86	4.00	2.86
SB		1.00	✓	Distance			4.00	2.86
ЕВ	1.00	1.00	✓	Distance	4.00	2.86	4.00	2.86
NB	1.00	1.00	✓	Distance	4.00	2.86	4.00	2.86

Slope / Intercept / Capacity

Roundabout Slope and Intercept used in model

Leg	Final slope	Final intercept (PCE/hr)
WB	0.558	1266
SB		
EB	0.558	1266
NB	0.558	1266

The slope and intercept shown above include any corrections and adjustments.

Traffic Demand

✓	✓	Truck Percentages	2.00
· ·		madit i diddinaged	2.00

Demand overview (Traffic)

Leg	Linked leg	Profile type	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (%)
WB		PHF	✓	356	100.000
SB					
EB		PHF	✓	134	100.000
NB		PHF	✓	449	100.000

Peak Hour Factor Data (Traffic)

Leg	Hourly volume (Veh/hr)	Peak hour factor	Peak time segment			
WB	356	0.92	SecondQuarter			
SB						
EB	134	0.92	SecondQuarter			
NB	449	0.92	SecondQuarter			

Demand overview (Pedestrians)

Leg	Profile type	Average pedestrian flow (Ped/hr)
WB	[PHF]	5.00
SB	[PHF]	5.00
EB	[PHF]	5.00
NB	[PHF]	5.00

Peak Hour Factor Data (Pedestrians)

Leg	Hourly volume (Ped/hr)	Peak hour factor	Peak time segment			
WB	5.00	1.00	SecondQuarter			
SB	5.00	1.00	SecondQuarter			
EB	5.00	1.00	SecondQuarter			
NB	5.00	1.00	SecondQuarter			

Origin-Destination Data

Demand (Veh/hr)

	То									
		WB	SB	EB	NB					
	WB	0	82	274	0					
From	SB	0	0	0	0					
	EB	134	0	0	0					
	NB	448	1	0	0					

Vehicle Mix

Truck Percentages

	То									
		WB	SB	EB	NB					
	WB	5	5	5	5					
From	SB	5	5	5	5					
	EB	5	5	5	5					
	NB	5	5	5	5					

Results

Results Summary for whole modelled period

1030	tesuits duffillary for whole modelled period													
Leg	Max V/C Ratio	Max Delay (s)	Max Queue (Veh)	Max 95th percentile Queue (Veh)	Max LOS	Average Demand (Veh/hr)	Total Intersection Arrivals (Veh)							
WB	0.25	3.97	0.3	1.4	Α	356	274							
SB														
EB	0.12	3.40	0.1	0.5	Α	134	134							
NB	0.00	3.22	0.0	0.5	Α	449	1							

Main Results for each time segment

00:00 - 00:15

Leg	Total Demand (Veh/hr)	Intersection demand (Veh/hr)	Intersection Arrivals (Veh)	Bypass demand (Veh/hr)	Bypass exit flow (Veh/hr)	Circulating flow (Veh/hr)	Pedestrian demand (Ped/hr)	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
WB	335	258	65	77	422	0.94	5.00	1205	0.214	257	126	0.0	0.3	3.795	Α
SB						257	5.00				0.94				
EB	126	126	32	0	0	0	5.00	1205	0.105	126	257	0.0	0.1	3.332	А
NB	423	0.94	0.24	422	0	126	5.00	1132	0.001	0.94	0	0.0	0.0	3.183	А

00:15 - 00:30

Leg	Total Demand (Veh/hr)	Intersection demand (Veh/hr)	Intersection Arrivals (Veh)	Bypass demand (Veh/hr)	Bypass exit flow (Veh/hr)	Circulating flow (Veh/hr)	Pedestrian demand (Ped/hr)	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
WB	387	298	74	89	487	1	5.00	1205	0.247	298	146	0.3	0.3	3.967	Α
SB						298	5.00				1				
EB	146	146	36	0	0	0	5.00	1205	0.121	146	298	0.1	0.1	3.396	Α
NB	488	1	0.27	487	0	146	5.00	1119	0.001	1	0	0.0	0.0	3.218	Α

00:30 - 00:45

Leg	Total Demand (Veh/hr)	Intersection demand (Veh/hr)	Intersection Arrivals (Veh)	Bypass demand (Veh/hr)	Bypass exit flow (Veh/hr)	Circulating flow (Veh/hr)	Pedestrian demand (Ped/hr)	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
WB	366	282	70	84	461	1	5.00	1205	0.234	282	138	0.3	0.3	3.901	Α
SB						282	5.00				1				
EB	138	138	34	0	0	0	5.00	1205	0.114	138	282	0.1	0.1	3.371	Α
NB	462	1	0.26	461	0	138	5.00	1124	0.001	1	0	0.0	0.0	3.205	Α

00:45 - 01:00

Leg	Total Demand (Veh/hr)	Intersection demand (Veh/hr)	Intersection Arrivals (Veh)	Bypass demand (Veh/hr)	Bypass exit flow (Veh/hr)	Circulating flow (Veh/hr)	Pedestrian demand (Ped/hr)	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
WB	335	258	65	77	422	0.94	5.00	1205	0.214	258	126	0.3	0.3	3.802	Α
SB						258	5.00				0.94				
EB	126	126	32	0	0	0	5.00	1205	0.105	126	258	0.1	0.1	3.338	Α
NB	423	0.94	0.24	422	0	126	5.00	1131	0.001	0.94	0	0.0	0.0	3.186	Α

Queue Variation Results for each time segment

00:00 - 00:15

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
WB	0.27	0.00	0.00	0.27	0.27			N/A	N/A
SB									
EB	0.12	0.00	0.00	0.12	0.12			N/A	N/A
NB	0.00	0.00	0.25	0.45	0.48			N/A	N/A

00:15 - 00:30

00.10	00.00								
Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message			Probability of exactly reaching marker
WB	0.33	0.03	0.25	0.45	0.48			N/A	N/A
SB									
EB	0.14	0.03	0.26	0.46	0.49			N/A	N/A
NB	0.00	0.00	0.00	0.00	0.00			N/A	N/A

00:30 - 00:45

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
WB	0.31	0.03	0.31	1.09	1.42			N/A	N/A
SB									
EB	0.13	0.03	0.25	0.45	0.48			N/A	N/A
NB	0.00	0.00	0.00	0.00	0.00			N/A	N/A

00:45 - 01:00

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
WB	0.27	0.00	0.00	0.27	0.27			N/A	N/A
SB									
EB	0.12	0.00	0.00	0.12	0.12			N/A	N/A
NB	0.00	0.00	0.00	0.00	0.00			N/A	N/A

Junctions 10

ARCADY 10 - Roundabout Module

Version: 10.0.4.1693 © Copyright TRL Software Limited, 2021

For sales and distribution information, program advice and maintenance, contact TRL Software: +44 (0)1344 379777 software@trl.co.uk trlsoftware.com

The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: Arcady 24 NewConnlCHwy102SB.j10

Path: C:\Users\copel\OneDrive\Desktop\GRIFFIN\Projects\2023\2323 - East Hants Traffic Study\Analysis\Opt 2 - North IC\Arcady

Report generation date: 3/28/2024 9:38:39 AM

«Existing Geometry - 2053 Total Opt 2, PM Vols

- »Intersection Network
- »Legs
- »Traffic Demand
- »Origin-Destination Data
- »Vehicle Mix
- »Results

Summary of intersection performance

					A	AM V	ols							F	PM Vo	ols		
	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity	Set ID	Queue (Veh)	95% Queue (Veh)	Delay (s)	V/C Ratio	LOS	Intersection Delay (s)	Intersection LOS	Network Residual Capacity
								Existing 0	Seometry	- 20	53 Tota	al Opt	2					
Leg WB	D5	0.6	1.8	4.92	0.39	Α	4.86	^	143 %	D6	0.3	1.4	3.96	0.25	Α	4.02	_	208 %
Leg SB	טט	0.1	0.5	4.29	0.06	Α	4.00	Α	[Leg WB]	Do	0.2	0.5	4.13	0.14	Α	4.02	A	[Leg SB]

There are warnings associated with one or more model runs - see the 'Data Errors and Warnings' tables for each Analysis or Demand Set.

Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle. Intersection LOS and Intersection Delay are demand-weighted averages. Network Residual Capacity indicates the amount by which network flow could be increased before a user-definable threshold (see Analysis Options) is met.

File summary

File Description

Title	East Hants Traffic Study
Location	MEH - Trunk 2
Site number	23
Date	3/26/2024
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	
Analyst	SURFACEPRO7\copel
Description	Option 2

Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units
m	kph	Veh	Veh	perHour	s	-Min	perMin

Analysis Options

Vehicle length (m)	Calculate Queue Percentiles	Calculate detailed queueing delay	Show lane queues in feet / metres	Show all PICADY stream intercepts	Calculate residual capacity	Residual capacity criteria type	V/C Ratio Threshold	Average Delay threshold (s)	Queue threshold (PCE)	Use iterations with HCM roundabouts	Max number of iterations for roundabouts
5.75	✓				✓	Delay	0.85	36.00	20.00		500

Analysis Set Details

ID	Name	Description	Include in report	Network flow scaling factor (%)	Network capacity scaling factor (%)
Α1	Existing Geometry	Single lane entries	✓	100.000	100.000

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	Run automatically
D6	2053 Total Opt 2	PM Vols	PHF	00:00	01:00	15	✓

Existing Geometry - 2053 Total Opt 2, PM Vols

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Queue variations	Analysis Options	Queue percentiles may be unreliable if the mean queue in any time segment is very low or very high.

Intersection Network

Intersections

Intersection	Name	Intersection type	Use circulating lanes	Leg order	Intersection Delay (s)	Intersection LOS
24	NewConn&Hwy102SB	Standard Roundabout		WB, SB, NB	4.02	Α

Intersection Network

Driving side	Lighting	Network residual capacity (%)	First leg reaching threshold	Network delay (s)	Network LOS
Right	Normal/unknown	208	Leg SB	4.02	Α

Legs

Legs

Leg	Name	Description	No yield line
WB	LantzWB		
SB	OffRampSB		
NB	OnRampNB		

Roundabout Geometry

Leg	V - Approach road half- width (m)	E - Entry width (m)	l' - Effective flare length (m)	R - Entry radius (m)	D - Inscribed circle diameter (m)	PHI - Conflict (entry) angle (deg)	Entry only	Exit only
WB	3.50	4.00	30.0	30.0	45.0	20.0		
SB	3.50	4.00	30.0	30.0	45.0	20.0	✓	
NB								✓

Unsignalled Pedestrian Crossing Crossings

	-	_						
Leg	Space between crossing and intersection entry (Unsignalled Pedestrian Crossing) (PCE)	Vehicles queueing on exit (Unsignalled Pedestrian Crossing) (PCE)	Central Refuge	Crossing data type	Crossing length (entry side) (m)	Crossing time (entry side) (s)	Crossing length (exit side) (m)	Crossing time (exit side) (s)
WB	1.00	1.00	✓	Distance	4.00	2.86	4.00	2.86
SB	1.00	1.00	✓	Distance	4.00	2.86	4.00	2.86
NB		1.00	✓	Distance			4.00	2.86

Slope / Intercept / Capacity

Roundabout Slope and Intercept used in model

Leg	Final slope	Final intercept (PCE/hr)
WB	0.558	1266
SB	0.558	1266
NB		

The slope and intercept shown above include any corrections and adjustments.

Traffic Demand

Vehicle mix varies over turn	Vehicle mix varies over entry	Vehicle mix source	PCE Factor for a Truck (PCE)
✓	✓	Truck Percentages	2.00

Demand overview (Traffic)

Leg	Linked leg	Profile type	Use O-D data	Average Demand (Veh/hr)	Scaling Factor (%)
WB		PHF	✓	274	100.000
SB		PHF	✓	135	100.000
NB					

Peak Hour Factor Data (Traffic)

		,	
Leg	Hourly volume (Veh/hr)	Peak hour factor	Peak time segment
WB	274	0.92	SecondQuarter
SB	135	0.92	SecondQuarter

NB |

Demand overview (Pedestrians)

Leg	Profile type	Average pedestrian flow (Ped/hr)
WB	[PHF]	5.00
SB	[PHF]	5.00
NB	[PHF]	5.00

Peak Hour Factor Data (Pedestrians)

Leg	Hourly volume (Ped/hr)	Peak hour factor	Peak time segment
WB	5.00	1.00	SecondQuarter
SB	5.00	1.00	SecondQuarter
NB	5.00	1.00	SecondQuarter

Origin-Destination Data

Demand (Veh/hr)

		To	,	
		WB	SB	NB
From	WB	0	0	274
FIOIII	SB	134	0	1
	NB	0	0	0

Vehicle Mix

Truck Percentages

		To)		
		WB	SB	NB	
From	WB	5	5	5	
FIOIII	SB	5	5	5	
	NB	5	5	5	

Results

Results Summary for whole modelled period

Leg	Max V/C Ratio	Max Delay (s)	Max Queue (Veh)	Max 95th percentile Queue (Veh)	Max LOS	Average Demand (Veh/hr)	Total Intersection Arrivals (Veh)
WB	0.25	3.96	0.3	1.4	А	274	274
SB	0.14	4.13	0.2	0.5 A		135	135
NB							

Main Results for each time segment

00:00 - 00:15

Leg	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Circulating flow (Veh/hr)	Pedestrian demand (Ped/hr)	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
WB	258	65	0	5.00	1205	0.214	257	126	0.0	0.3	3.793	Α
SB	127	32	257	5.00	1046	0.122	127	0	0.0	0.1	3.913	Α
NB			126	5.00				258				

00:15 - 00:30

Leg	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Circulating flow (Veh/hr)	Pedestrian demand (Ped/hr)	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
WB	298	74	0	5.00	1205	0.247	298	146	0.3	0.3	3.964	Α
SB	147	37	298	5.00	1018	0.144	147	0	0.1	0.2	4.133	Α
NB			146	5.00				299				

00:30 - 00:45

00:30	- 00:45											
Leg	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Circulating flow (Veh/hr)	Pedestrian demand (Ped/hr)	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
WB	282	70	0	5.00	1205	0.234	282	138	0.3	0.3	3.898	A
SB	139	35	282	5.00	1029	0.135	139	0	0.2	0.2	4.046	А
NB			138	5.00				283				

00:45 - 01:00

Leg	Total Demand (Veh/hr)	Intersection Arrivals (Veh)	Circulating flow (Veh/hr)	Pedestrian demand (Ped/hr)	Capacity (Veh/hr)	V/C Ratio	Throughput (Veh/hr)	Throughput (exit side) (Veh/hr)	Start queue (Veh)	End queue (Veh)	Delay (s)	Unsignalised level of service
WB	258	65	0	5.00	1205	0.214	258	126	0.3	0.3	3.800	Α
SB	127	32	258	5.00	1045	0.122	127	0	0.2	0.1	3.924	Α
NB			126	5.00				259				

Queue Variation Results for each time segment

00:00 - 00:15

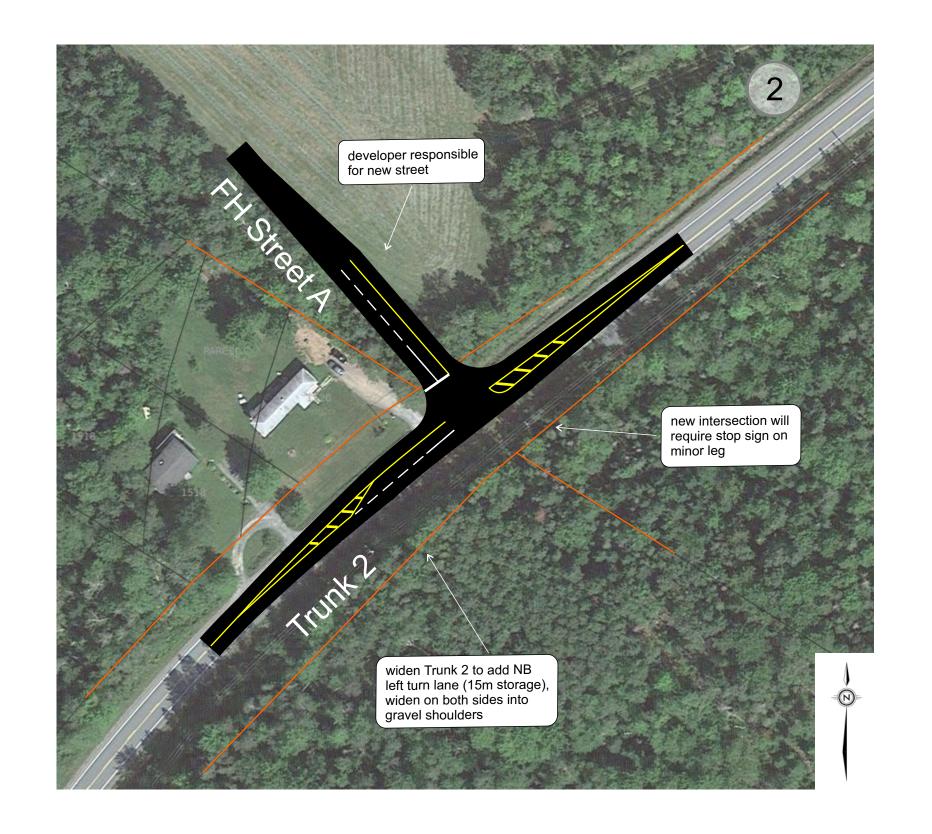
Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
WB	0.27	0.00	0.00	0.27	0.27			N/A	N/A
SB	0.14	0.00	0.00	0.14	0.14			N/A	N/A
NB									

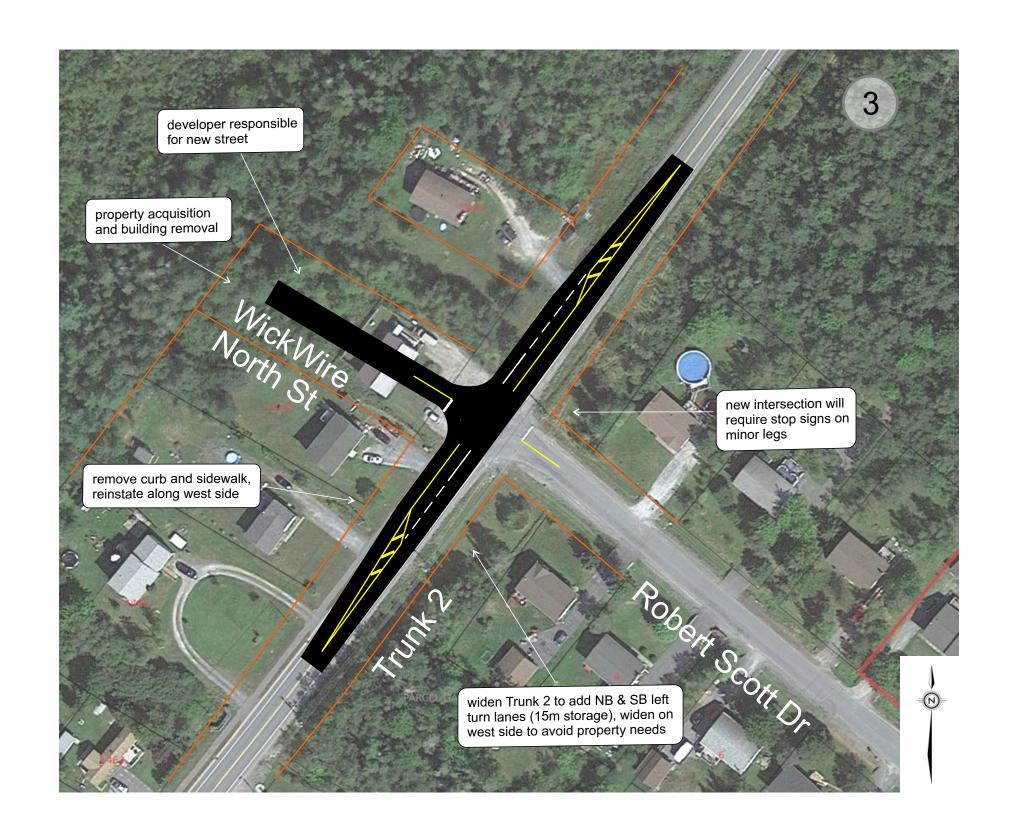
00:15 - 00:30

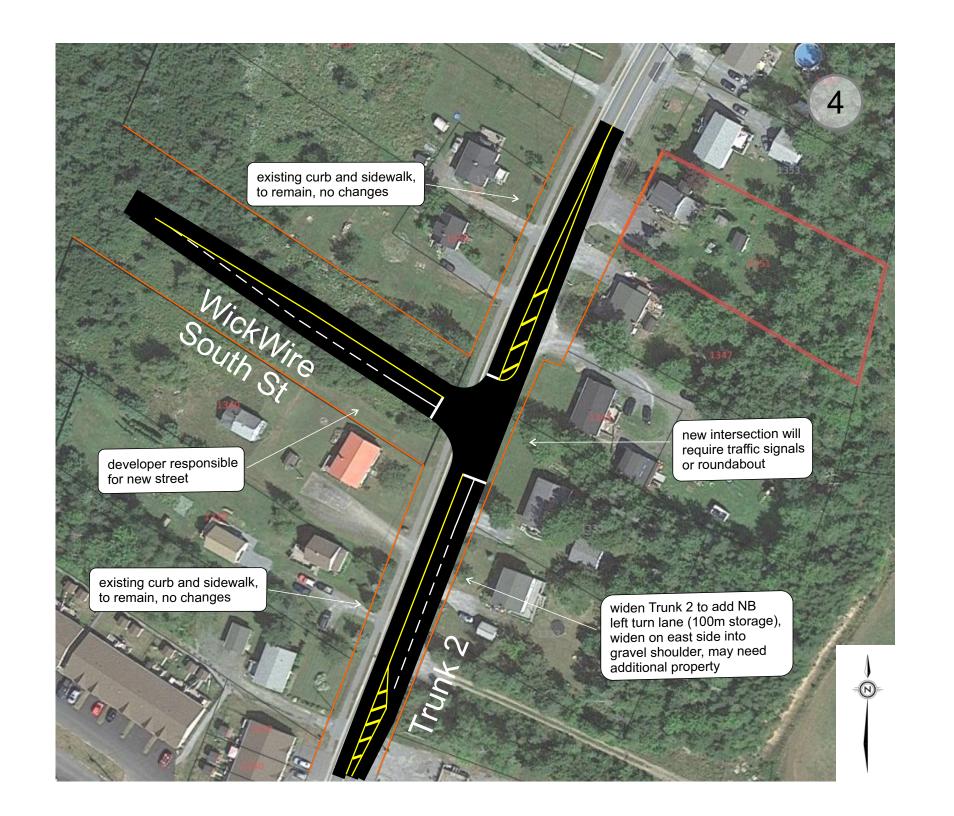
Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
WB	0.33	0.03	0.25	0.45	0.48			N/A	N/A
SB	0.17	0.03	0.25	0.46	0.48			N/A	N/A
NB									

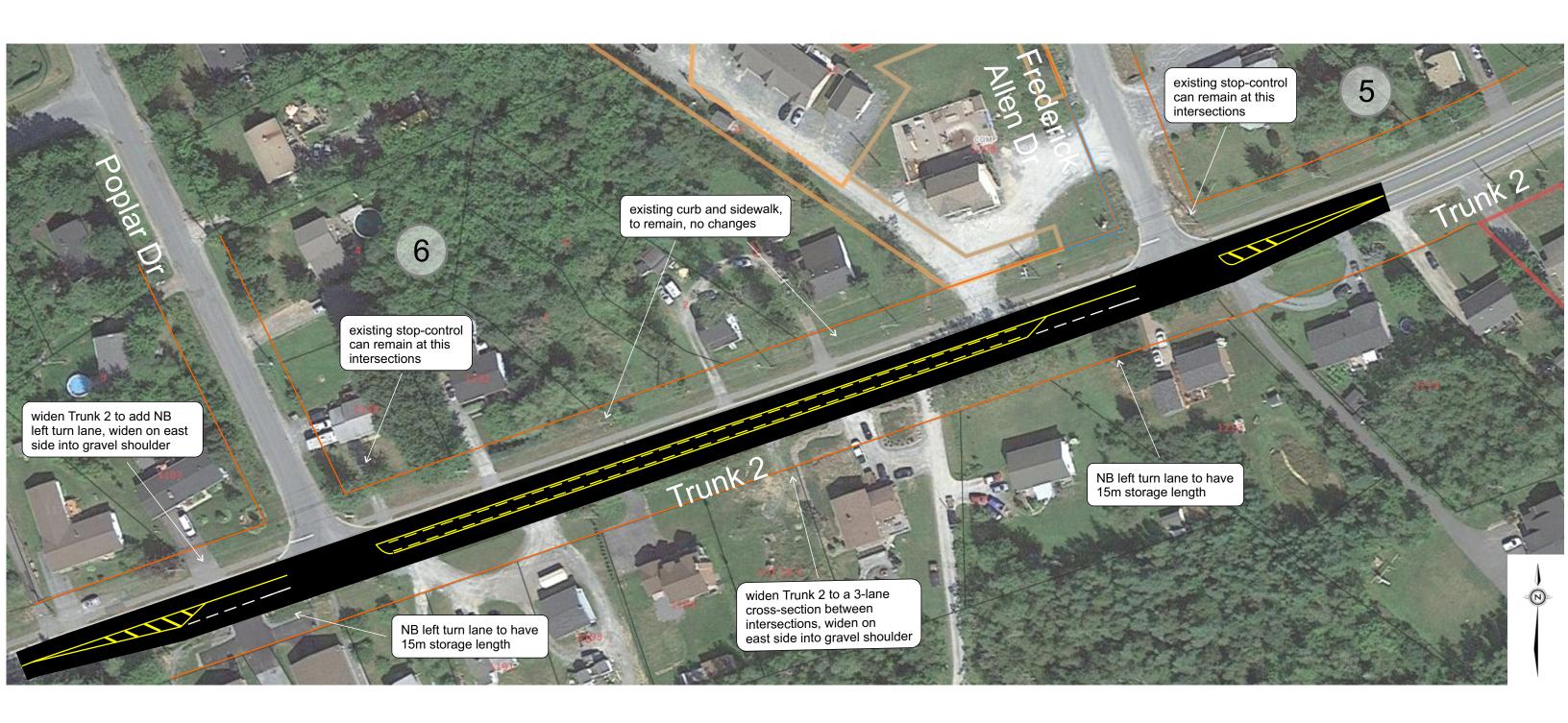
00:30 - 00:45

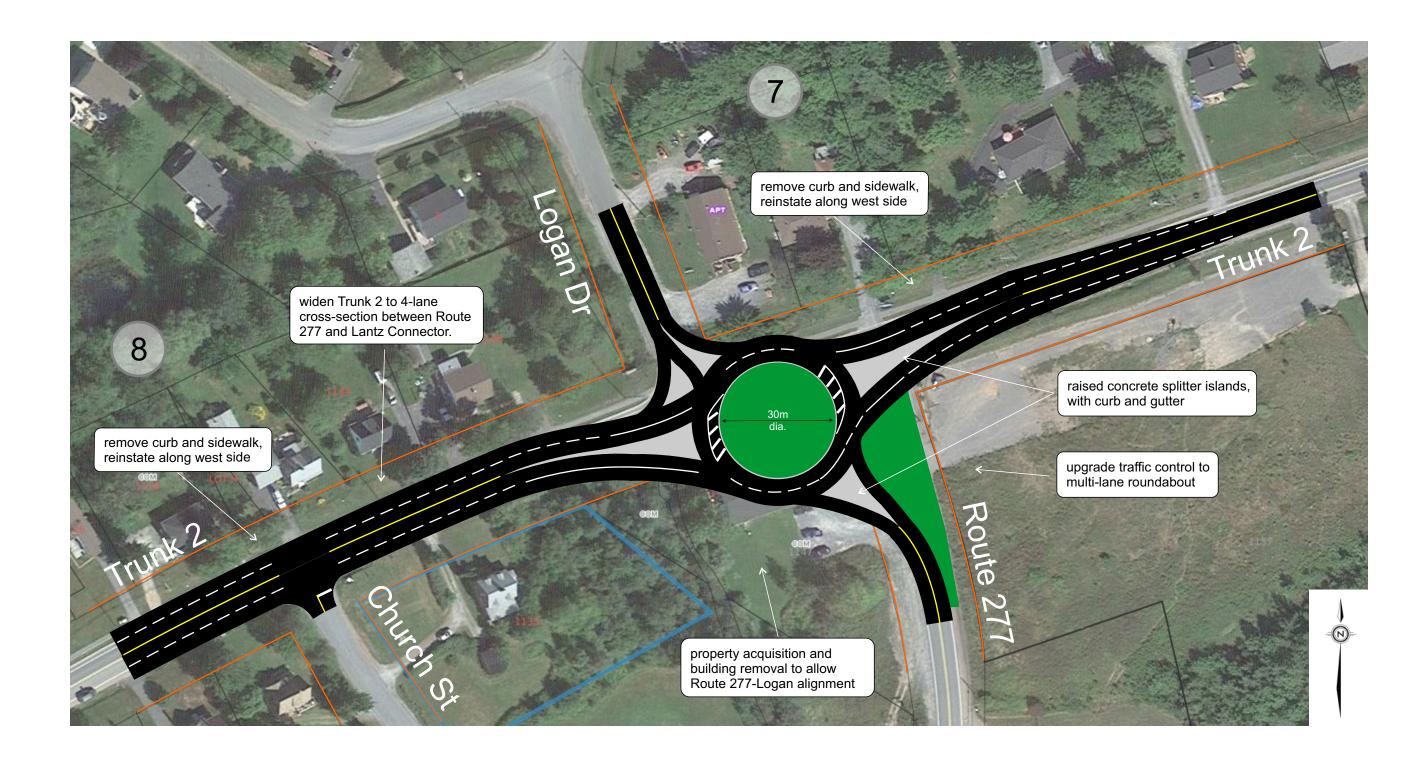
Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
WB	0.31	0.03	0.31	1.09	1.42			N/A	N/A
SB	0.16	0.03	0.25	0.45	0.48			N/A	N/A
NB									

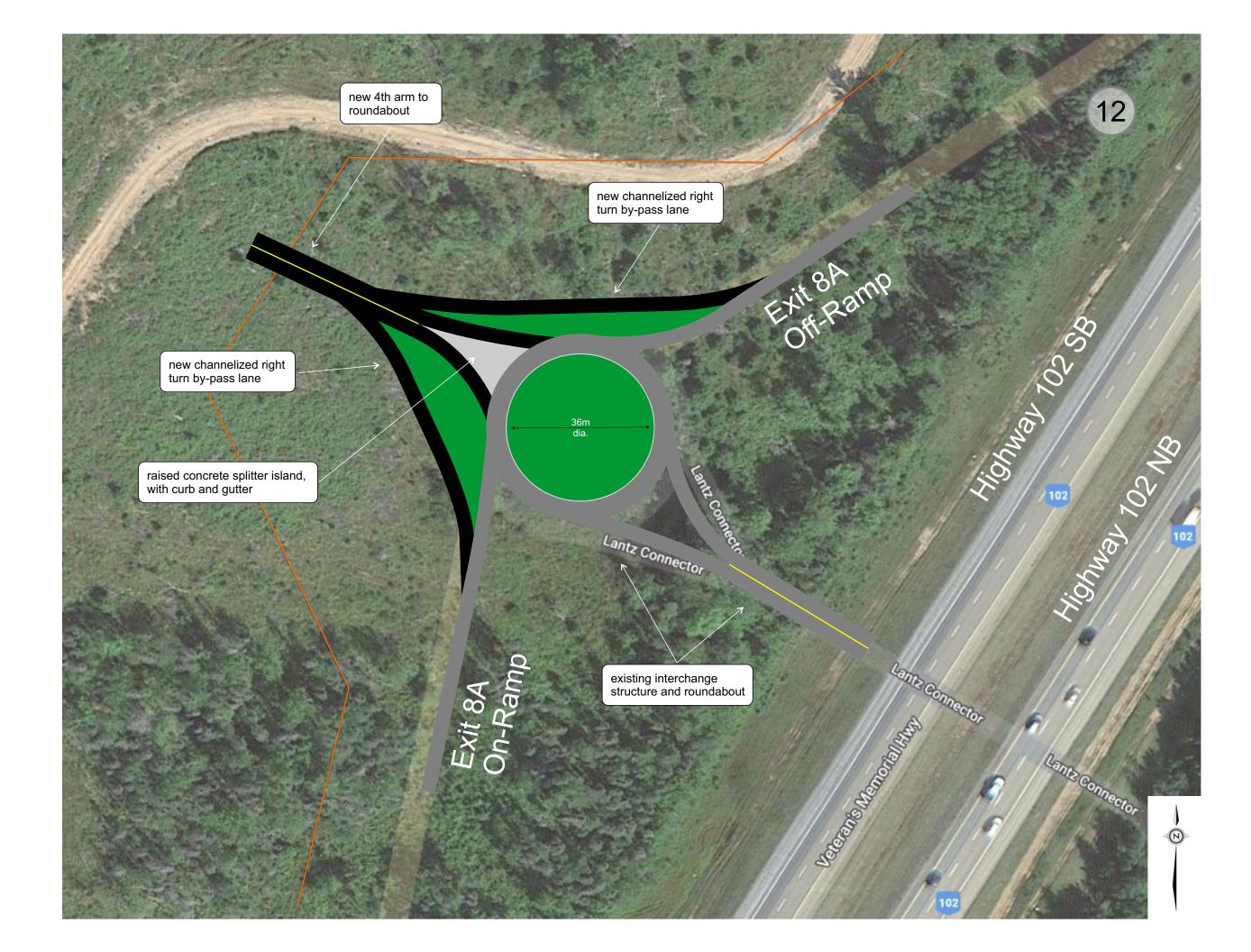

00:45 - 01:00

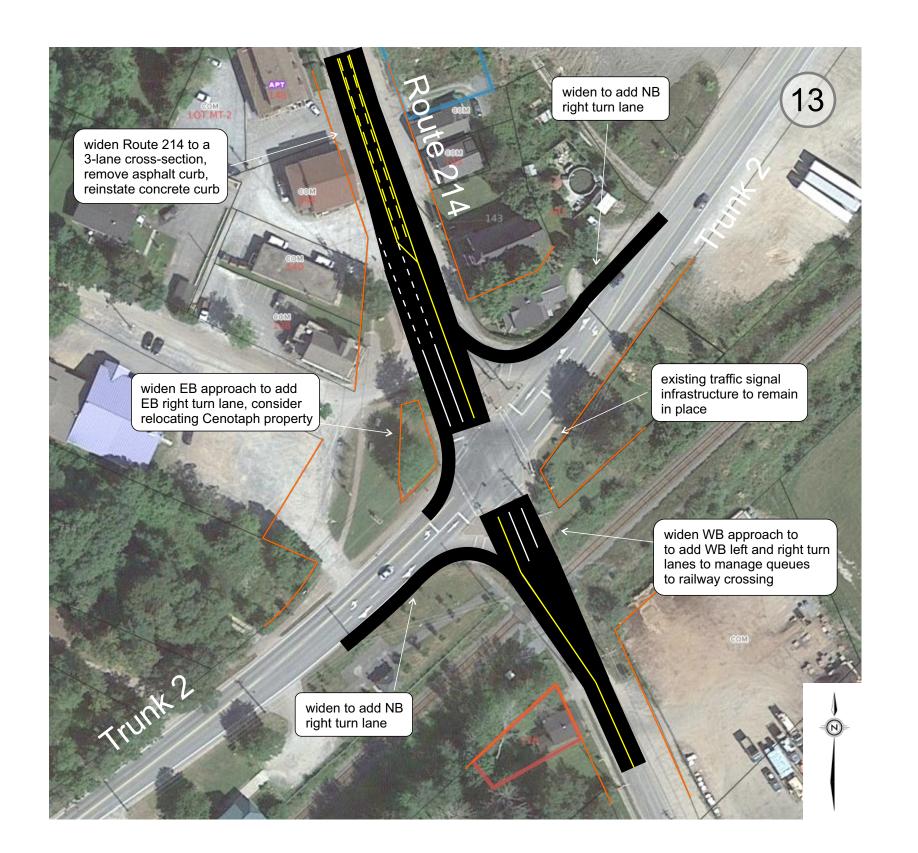

Leg	Mean (Veh)	Q05 (Veh)	Q50 (Veh)	Q90 (Veh)	Q95 (Veh)	Percentile message	Marker message	Probability of reaching or exceeding marker	Probability of exactly reaching marker
WB	0.27	0.00	0.00	0.27	0.27			N/A	N/A
SB	0.14	0.00	0.00	0.14	0.14			N/A	N/A
NB									

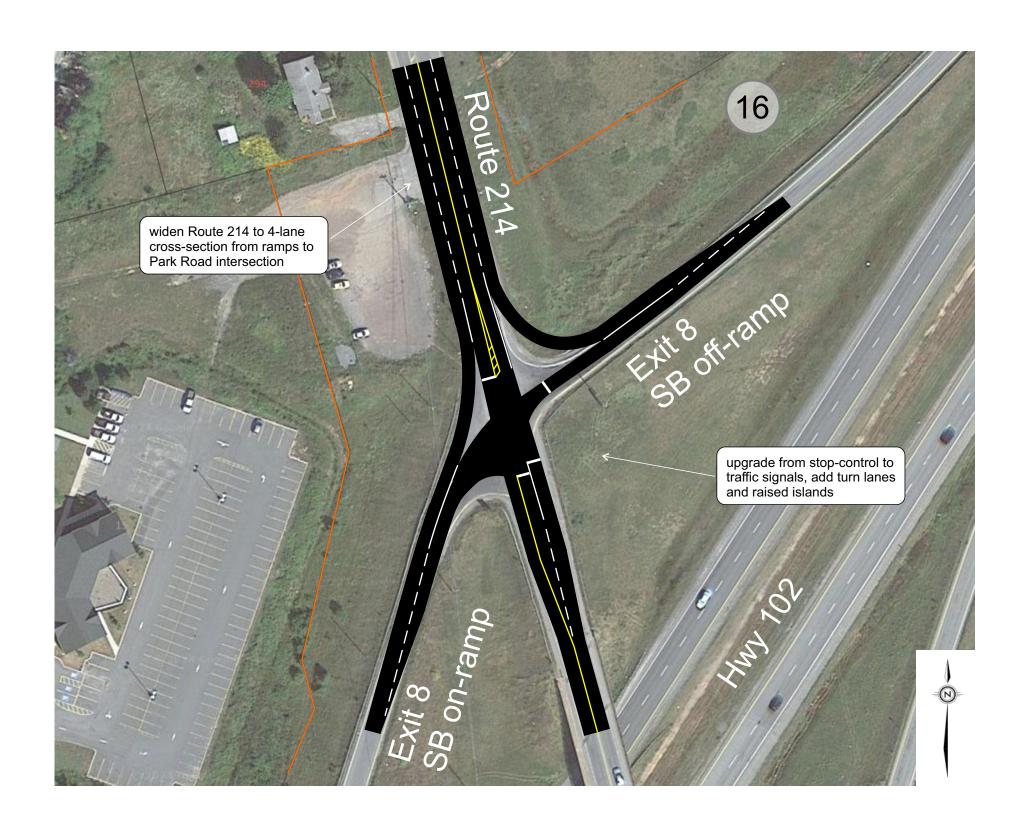


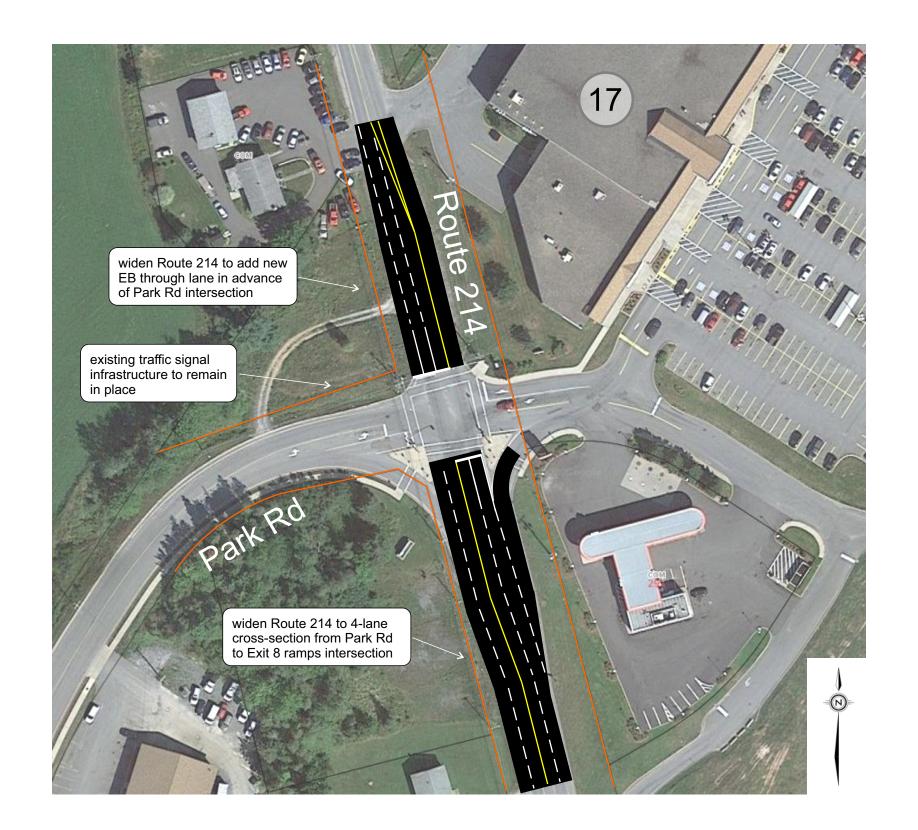

Appendix VII

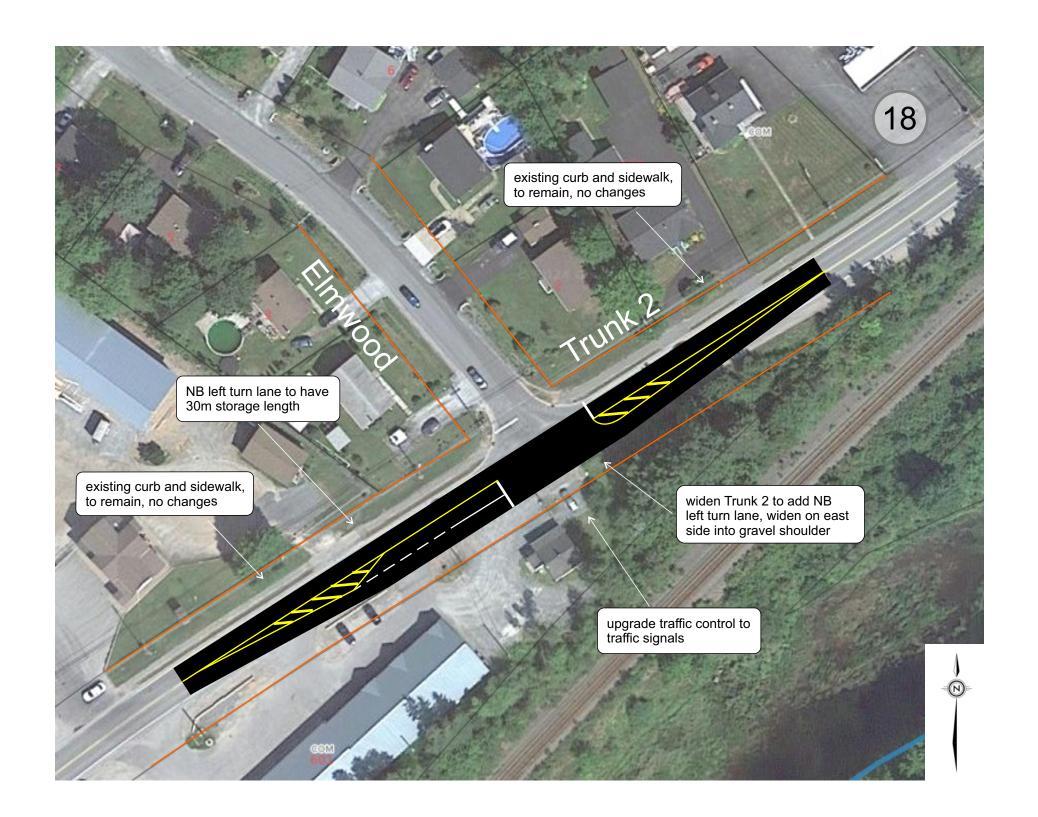

Roadway Infrastructure Concept Diagrams

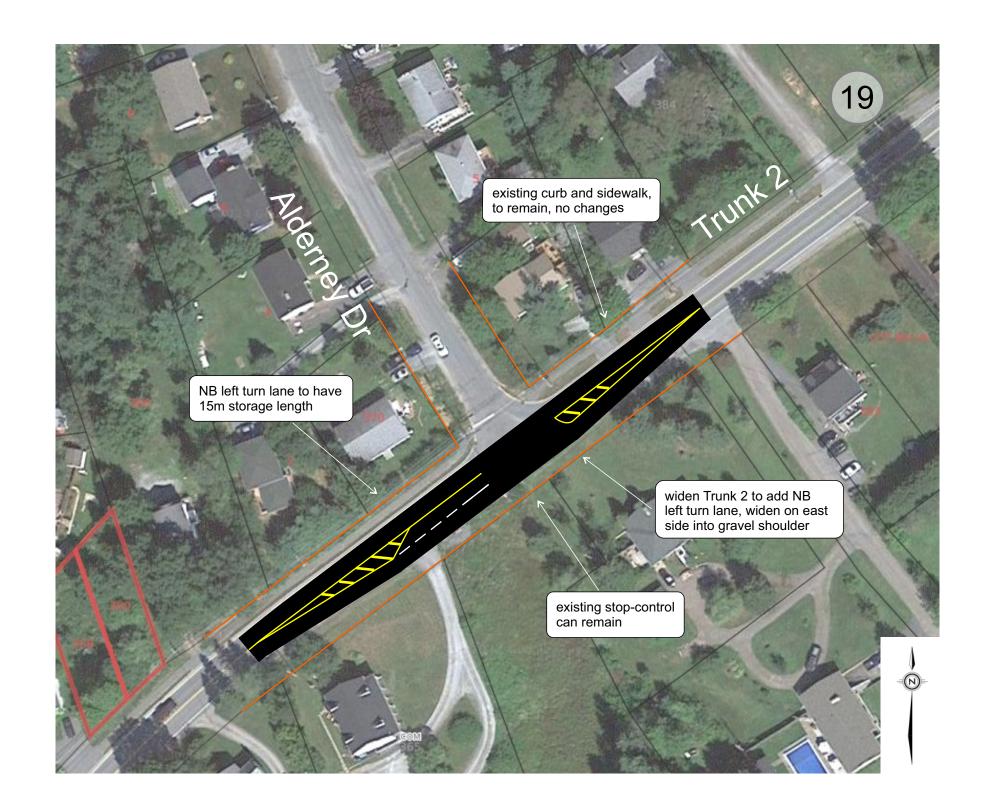


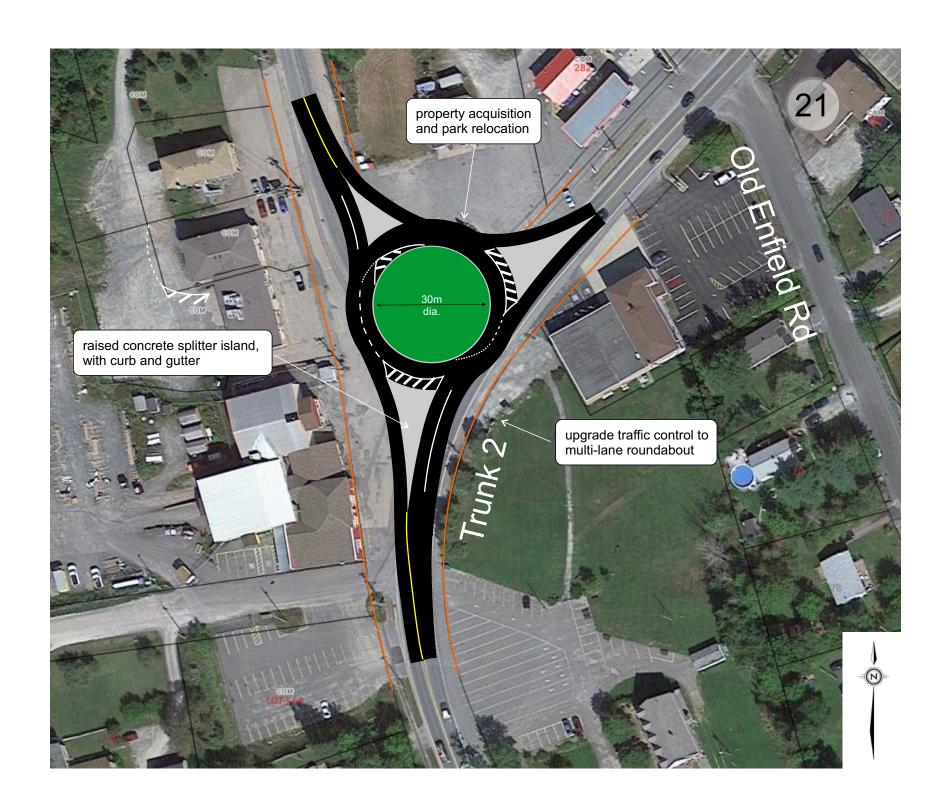












Appendix VIII

Interchange Location Assessment Notes

		New I/C	- Candidate Locatio	ns
		Enfield South		Lantz North Near
		Old Enfield Road		Lantz-Milford Boundary
A. Transportation Demand				
1 Vehicle travel times / road network delay	В	expected congestion along Trunk 2 in Lantz	А	manages Trunk 2 demand reducing congestion
2 Vehicle utilization of new interchange	В	moderate utilization in Enfield area - splits traffic	А	moderate utilization in Lantz north, long-term ability
3 Ability to manage demand in Trunk 2 corridor	В	Sufficient Trunk 2 capacity in Enfield - results in	Α	Best manages future demand along Trunk 2 in Lantz
B. Geometric Design				
4 I/C spacing along Hwy 102	А	>2km to nearest I/C (2.5km to Exit 7)	А	>2km to nearest I/C (3.3km to Exit 8A)
5 Access-controlled Connector Road	В	existing 2-lane road with access proliferation	А	new greenfield road - no accesses
6 Implementation constraints	В	development adjacent to existing bridge structure	А	vacant lands - no contraints
C. Land Use / Settlement Impacts				
7 Promotes efficient settlement pattern	В	promotes housing in rural/unserviced area	А	promotes housing in serviced area (Lantz north)
8 New I/C serves greater population/employment	В	located in established/built area of Enfield	А	located near greatest concentration of new development
D. Environment				
9 Estimate of watercourse/wetland impacts	А	reduced watercourse/wetland impacts	В	increased watercourse/wetland impacts
10 Estimate of network fuel consumption	В	inefficient location creates congestion	А	efficient location minimizes congestion
E. Socio-Economic				
11 Existing property/building impacts	В	requires removal of existing buildings	A	greenfield area - little to no impacts
12 Opportunity to create highway commercial businesses	В	minimal opportunity - limited frontage along Hwy 102	А	ability to service new commerical / industrial businesses along Hwy 102
TOTAL SCORE		Mostly B's (least preferred)		Mostly A's (most preferred)
RANK ORDER	2	2nd CHOICE	1	1st CHOICE

Evaluation / Scoring Method:

Α	Most Preferred
В	Least Preferred

Appendix IX

Class D Road Infrastructure
Cost Estimates

Volume	/Layout Assu	ımptions			Unit Prices			
Radius	12	2 m		Asphalt - Supply Install	\$ 400	\$/tonne		
Asphalt Lane Width		3 m		Asphalt - Removal Full Depth		\$/sq.m		
Gravel Shoulder Storage Bay (unless otherwise)		2 m 5 m		Granulars Curb	\$ 60 \$ 120	\$/cu.m		
Taper		Dual-side expansion 36:1, sing	le side expansion 15:1	Culvert (600mm)	\$ 800			
Culvert Dia.) mm	ile side expansion 15.1	Common Excavation		\$/ cu.m		
Asphalt Thickness	0.15			Topsoil (10cm depth)		\$/ sq.m		
Granulars Thickness	0.45			Hydroseed		\$/sq.m		
Landscaped Mound Height		2 m		Borrow A		\$/cu.m		
Granular Surrounding Curb	0.135	5 sq.m/m		Sidewalk Concrete Island	\$ 200	\$/m \$/sq.m		
				Traffic Control	\$ 30,000			
				Guiderail	\$ 125			
				Signage	\$ 10,000	LS		
				Light Standard/Signals	\$ 200,000			
				Mobilization	\$ 30,000			
				Traffic Control H&S Planning	\$ 70,000 \$ 5,000			
				Construction Contingency	20%	LS		
				Engineering	18%			
Volumes/Areas		#2 - Trunk 2 / FH Street A	#3 - Trunk 2 to Robert Scott / Armco North	#4 - Trunk 2 / Armco South	#5 - Trunk 2 / Erodorick Allon	#6 - Trunk 2 / Poplar	#7 - Trunk 2 / Route 277-Logan #	ta - Trunk 2 / Church
Asphalt	m^2	1499	#3 - Trunk 2 to Robert Scott / Armico North		#5 - Truffk 27 Frederick Allen 1760	# 6 - Trunk 27 Popiar 1941	# <i>t</i> - Trunk 2 <i>t</i> Route 2 <i>tt</i> -Logan 4144	1170
Asphale	tonne	528.3975	510.7725			684.2025	1460.76	412.425
Granulars	m^2	1910	1840		2139	2304	5455	1367
	m^3	859.5	878.355	1315.845	962.55	1036.8	2613.51	625.545
Curb (total length)	m	0	373	247			1176	77
Culvert	m	0	0-0	31	73	70		22
Sidewalk	m 2	0	373				255	77
Concrete Island	m ² m ²	0					500	
Landscaped Area (mound)	m m ³	0	0	0	0	0	706 847.2	0
Landscaped Area (flat)	m ²	0	U	0	U	U	319	0
Guiderail	m						319	
Signage	ea	1	1				1	
Signals	ea			1				
Cost								
Asphalt - Supply Install		\$ 211,359	\$ 204,309	\$ 317,955	\$ 248,160	\$ 273,681	\$ 584,304	\$ 164,970
Asphalt - Removal Full Depth		\$ 22,485	\$ 21,735	\$ 33,825	\$ 26,400	\$ 29,115	\$ 62,160	\$ 17,550
Granulars		\$ 51,570						
Curb		-	\$ 44,760			Ψ	\$ 141,120	
Culvert (600mm) Common Excavation		· ·	\$ - \$ 43,918	\$ 24,800 \$ 65,792				
Topsoil (10cm depth)		\$ -	\$ -	\$ -	\$ -		\$ 10,250	
Hydroseed		\$ -	\$ -	\$ -	\$ -		\$ 5,125	\$ -
Borrow A		\$ -	-	\$ -	\$ -	· ·	\$ 16,944	
Concrete Island		-	- 71.000	-	-	•	\$ 120,000	
Sidewalk Traffic Control		\$ 30,000	\$ 74,600 \$ 30,000		\$ - \$ 30,000	\$ 30,000	\$ 51,000 \$ 30,000 \$	
Guide Rail		\$ 30,000	\$ 50,000		\$ -	\$ -		\$ 30,000 \$ -
Signage		•			\$ -	\$ -	\$ 10,000	
Light Standards/Signals		\$ -	\$ -	\$ 200,000		\$ -	\$ - 3	\$ -
Mobilization		\$ 30,000						
Traffic Control		\$ 70,000						
H&S Planning Sub Total		\$ 5,000 \$ 474,000						
Construction Contingency		\$ 474,000 \$ 94,800						
Engineering Design		\$ 86,000						
Total		\$ 654,800						
Notos								
Notes Power Pole Relocate		No	Yes	Yes	Yes	No	Yes y	res
Property Acquistion			Residential	Residential			•	10

Main	#12 - Lantz Connector / Exit 8A SB Ramps	#13 - Route 214 / Trunk 2	#16 - Route 214 / Exit 8 SB Ramps	#17 - Route 214 / Park Rd	#18 - Trunk 2 / Elmwood Dr	#19 - Trunk 2 / Alderney Dr	#21 - Trunk 2 / Old Enfield Rd
1640	113	7 268			1360		
100	400.792	5 945.75 7	5 1015.905	704.295	479.4	428.9925	702.885
190	164	0 326	9 3727	2352	1545	1385	2764
190	824.	4 1562.44	5 1677.15	1080	695.25	623.25	1336.41
181 0 0 0 0 0 0 0 0 0 0 0 0 8 1388 1388 184 250 1 1 1 1 1 1 1 160,317 \$ 378,303 \$ 406,362 \$ 281,716 \$ 191,760 \$ 171,597 \$ 281,717,597 \$			7	160			686
181 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 1388 250 1 1 1 1 1 1 1 1 1 10 1						25	
1		19	0				136
184 184	18	1					1251
184 184							706
1888 250 1 1 1 1 1 1 1 1 100.317 \$ 378,303 \$ 406,362 \$ 281,718 \$ 191,760 \$ 171,597 \$ 281,719,705 \$ 40,245 \$ 43,230 \$ 29,970 \$ 20,400 \$ 18,255 \$ 29,785 \$ 40,245 \$ 43,230 \$ 29,970 \$ 20,400 \$ 18,255 \$ 29,785 \$ 40,245 \$ 43,230 \$ 40,6362 \$ 44,800 \$ 44,715 \$ 37,335 \$ 80,786,800 \$ 81,240 \$ - \$ 19,200 \$ - \$ 5 - \$ 20,000 \$ 62,400 \$ 18,255 \$ 29,400 \$ 29,400 \$		0	0) 0	0	0	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	138			ļ.			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
160,317 \$ 378,303 \$ 406,362 \$ 281,718 \$ 191,760 \$ 171,597 \$ 281, 17,055 \$ 40,245 \$ 43,230 \$ 29,970 \$ 20,400 \$ 18,255 \$ 29, 18, 18,255 \$ 29, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19							1
17,055 \$ 40,245 \$ 43,230 \$ 29,970 \$ 20,400 \$ 18,255 \$ 29, 49,464 \$ 93,747 \$ 100,629 \$ 64,800 \$ 41,715 \$ 37,395 \$ 80, 76,800 \$ 81,240 \$ - \$ 19,200 \$ - \$ - \$ 20,000 \$ - \$ - \$ - \$ - \$ - \$ 20,000 \$ 141,220 \$ 78,122 \$ 83,858 \$ 54,000 \$ 34,763 \$ 31,163 \$ 66, 13,880 \$ - \$ 1,840 \$ - \$ - \$ - \$ 20,000 \$ - \$ - \$ - \$ 920 \$ - \$ - \$ - \$ - \$ 1,640 \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ 1,640 \$ - \$ - \$ - \$ - \$ - \$ - \$ 1,640 \$ - \$ - \$ - \$ - \$ - \$ 1,640 \$ - \$ - \$ - \$ - \$ - \$ 1,640 \$ - \$ - \$ - \$ - \$ - \$ 1,640 \$ - \$ - \$ - \$ - \$ 1,640 \$ - \$ - \$ - \$ - \$ 1,640 \$ - \$ - \$ - \$ 1,640 \$ - \$ - \$ - \$ 1,640 \$ - \$ - \$ - \$ 1,640 \$ - \$ - \$ - \$ 1,640 \$ - \$ - \$ 1,640 \$ - \$ - \$ 1,640 \$ - \$ - \$ 1,640 \$ - \$ - \$ 1,640 \$ - \$ - \$ 1,640 \$ - \$ - \$ 1,640 \$ - \$ - \$ 1,640 \$ - \$ - \$ 1,640 \$ - \$ - \$ 1,640 \$ - \$ - \$ 1,640 \$ - \$ - \$ 1,640 \$ -			1		1		
17,055 \$ 40,245 \$ 43,230 \$ 29,970 \$ 20,400 \$ 18,255 \$ 29, 49,464 \$ 93,747 \$ 100,629 \$ 64,800 \$ 41,715 \$ 37,395 \$ 80, 76,800 \$ 81,240 \$ - \$ 19,200 \$ - \$ - \$ 20,000 \$ - \$ - \$ - \$ - \$ - \$ 20,000 \$ 141,220 \$ 78,122 \$ 83,858 \$ 54,000 \$ 34,763 \$ 31,163 \$ 66, 13,880 \$ - \$ 1,840 \$ - \$ - \$ - \$ 20,000 \$ - \$ - \$ - \$ 920 \$ - \$ - \$ - \$ - \$ 1,640 \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ 1,640 \$ - \$ - \$ - \$ - \$ - \$ - \$ 1,640 \$ - \$ - \$ - \$ - \$ - \$ 1,640 \$ - \$ - \$ - \$ - \$ - \$ 1,640 \$ - \$ - \$ - \$ - \$ - \$ 1,640 \$ - \$ - \$ - \$ - \$ 1,640 \$ - \$ - \$ - \$ - \$ 1,640 \$ - \$ - \$ - \$ 1,640 \$ - \$ - \$ - \$ 1,640 \$ - \$ - \$ - \$ 1,640 \$ - \$ - \$ - \$ 1,640 \$ - \$ - \$ 1,640 \$ - \$ - \$ 1,640 \$ - \$ - \$ 1,640 \$ - \$ - \$ 1,640 \$ - \$ - \$ 1,640 \$ - \$ - \$ 1,640 \$ - \$ - \$ 1,640 \$ - \$ - \$ 1,640 \$ - \$ - \$ 1,640 \$ - \$ - \$ 1,640 \$ - \$ - \$ 1,640 \$ -							
17,055 \$ 40,245 \$ 43,230 \$ 29,970 \$ 20,400 \$ 18,255 \$ 29, 49,464 \$ 93,747 \$ 100,629 \$ 64,800 \$ 41,715 \$ 37,395 \$ 80, 76,800 \$ 81,240 \$ - \$ 19,200 \$ - \$ - \$ 20,000 \$ - \$ - \$ - \$ - \$ - \$ 20,000 \$ 141,220 \$ 78,122 \$ 83,858 \$ 54,000 \$ 34,763 \$ 31,163 \$ 66, 13,880 \$ - \$ 1,840 \$ - \$ - \$ - \$ 20,000 \$ - \$ - \$ - \$ 920 \$ - \$ - \$ - \$ - \$ 1,640 \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ 1,640 \$ - \$ - \$ - \$ - \$ - \$ - \$ 1,640 \$ - \$ - \$ - \$ - \$ - \$ 1,640 \$ - \$ - \$ - \$ - \$ - \$ 1,640 \$ - \$ - \$ - \$ - \$ - \$ 1,640 \$ - \$ - \$ - \$ - \$ 1,640 \$ - \$ - \$ - \$ - \$ 1,640 \$ - \$ - \$ - \$ 1,640 \$ - \$ - \$ - \$ 1,640 \$ - \$ - \$ - \$ 1,640 \$ - \$ - \$ - \$ 1,640 \$ - \$ - \$ 1,640 \$ - \$ - \$ 1,640 \$ - \$ - \$ 1,640 \$ - \$ - \$ 1,640 \$ - \$ - \$ 1,640 \$ - \$ - \$ 1,640 \$ - \$ - \$ 1,640 \$ - \$ - \$ 1,640 \$ - \$ - \$ 1,640 \$ - \$ - \$ 1,640 \$ - \$ - \$ 1,640 \$ -							
49,464 \$ 93,747 \$ 100,629 \$ 64,800 \$ 41,715 \$ 37,395 \$ 80. 76,800 \$ 81,240 \$ - \$ 19,200 \$ - \$ 20,000 \$ 41,220 \$ 78,122 \$ 83,888 \$ 54,000 \$ 34,763 \$ 31,163 \$ 66. 13,880 \$ - \$ 1,840 \$ - \$ - \$ - \$ - \$ 7. 6,940 \$ - \$ 920 \$ - \$ - \$ - \$ - \$ 16. 43,440 \$ - \$ - \$ - \$ - \$ 1.840 \$ - \$ - \$ - \$ 1.840 \$ 1							
76,800 \$ 81,240 \$ - \$ 19,200 \$ - \$ 2,000 \$ 82,000 \$ 41,220 \$ 78,122 \$ 83,858 \$ 54,000 \$ 34,763 \$ 31,163 \$ 66,61 33,858 \$ 54,000 \$ 34,763 \$ 31,163 \$ 66,61 33,858 \$ 54,000 \$ 34,763 \$ 31,163 \$ 66,61 33,858 \$ 54,000 \$ 34,763 \$ 31,163 \$ 66,61 6							
- \$ - \$ - \$ - \$ - \$ - \$ - \$ 20,000 \$ 41,220 \$ 78,122 \$ 83,858 \$ 54,000 \$ 34,763 \$ 31,163 \$ 66, 13,880 \$ - \$ 1,840 \$ - \$ - \$ - \$ - \$ 7, 6,940 \$ - \$ - \$ - \$ - \$ - \$ 1,840 \$ - \$ - \$ - \$ - \$ - \$ 3, 3, 163 \$ 1,63 \$ 1,640 \$ - \$							
41,220	76,800						
13,880 \$ - \$ 1,840 \$ - \$ - \$ - \$ - \$ 7,6940 \$ - \$ 32,000 \$ - \$ - \$ 32,000 \$ 130,000 \$ 30,000			·	*			
6,940 \$ - \$ 920 \$ - \$ - \$ - \$ 3, 3, - \$ - \$ - \$ 16, 43,440 \$ - \$ 38,000 \$ - \$ - \$ - \$ - \$ 16, 43,440 \$ - \$ 38,000 \$ - \$ - \$ - \$ - \$ 16, 43,440 \$ - \$ 38,000 \$ - \$ - \$ - \$ 16, 43,440 \$ - \$ 38,000 \$ 130,000 \$ 3						\$ 31,163	
- \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$ - \$					•	\$ -	+ 1,000
43,440			\$ 920		*	\$	\$ 3,530
- \$ 38,000 \$ 30,000 \$			\$ -		•	-	\$ 16,944
30,000			\$ -	-	T	-	\$ 300,240
31,250 \$ - \$ - \$ - \$ - \$ - \$ - \$ 10, - \$ - \$ - \$ 200,000 \$ - \$ 200,000 \$ - \$ 10, - \$ - \$ 200,000 \$ - \$ 200,000 \$ - \$ 200,000 \$ 30,000 \$ 30,000 \$ 30,000 \$ 30,000 \$ 30,000 \$ 30,000 \$ 30,000 \$ 30,000 \$ 30,000 \$ 30,000 \$ 30,000 \$ 70,000 \$ 70,000 \$ 70,000 \$ 70,000 \$ 70,000 \$ 70,000 \$ 70,000 \$ 70,000 \$ 70,000 \$ 70,000 \$ 5,000 \$ 5,000 \$ 5,000 \$ 5,000 \$ 5,000 \$ 5,000 \$ 5,000 \$ 5,000 \$ 5,000 \$ 5,000 \$ 5,000 \$ 5,000 \$ 10,00				\$ -	•	· •	\$ 27,200
- \$ - \$ 200,000 \$ 200,000 \$ - \$ 200,000 \$ 30,			•				
- \$ - \$ 200,000 \$ - \$ 200,000 \$ - \$ 30,000 \$				•	·	•	•
30,000 \$ 30,000 \$ 30,000 \$ 30,000 \$ 30,000 \$ 30,000 \$ 30,000 \$ 70,000 \$ <td< td=""><td>•</td><td></td><td></td><td>¥</td><td>T</td><td></td><td>\$ 10,000</td></td<>	•			¥	T		\$ 10,000
70,000 \$ 70,000 \$ 70,000 \$ 70,000 \$ 70,000 \$ 70,000 \$ 70,000 \$ 70,000 \$ 70,000 \$ 70,000 \$ 5,000 \$ 624,000 \$ 414,000 \$ 1,041,041,041,041,041,041,041,041,041,04		τ					-
5,000 \$ 5,000 \$ 5,000 \$ 5,000 \$ 5,000 \$ 5,000 \$ 5,000 \$ 5,000 \$ 5,000 \$ 5,000 \$ 5,000 \$ 5,000 \$ 5,000 \$ 5,000 \$ 5,000 \$ 1,041 115,200 \$ 169,000 \$ 194,400 \$ 117,000 \$ 124,800 \$ 82,800 \$ 208, 104,000 \$ 153,000 \$ 175,000 \$ 106,000 \$ 113,000 \$ 75,000 \$ 188, 795,200 \$ 1,167,000 \$ 1,341,400 \$ 808,000 \$ 861,800 \$ 571,800 \$ 1,437,							
576,000 \$ 845,000 \$ 972,000 \$ 585,000 \$ 624,000 \$ 414,000 \$ 1,041, 115,200 \$ 169,000 \$ 194,400 \$ 117,000 \$ 124,800 \$ 82,800 \$ 208, 104,000 \$ 153,000 \$ 175,000 \$ 106,000 \$ 113,000 \$ 75,000 \$ 188, 795,200 \$ 1,167,000 \$ 1,341,400 \$ 808,000 \$ 861,800 \$ 571,800 \$ 1,437,							
115,200 \$ 169,000 \$ 194,400 \$ 117,000 \$ 124,800 \$ 82,800 \$ 208, 104,000 \$ 153,000 \$ 175,000 \$ 106,000 \$ 113,000 \$ 75,000 \$ 188, 795,200 \$ 1,167,000 \$ 1,341,400 \$ 808,000 \$ 861,800 \$ 571,800 \$ 1,437,							
104,000 \$ 153,000 \$ 175,000 \$ 106,000 \$ 113,000 \$ 75,000 \$ 188, 795,200 \$ 1,167,000 \$ 1,341,400 \$ 808,000 \$ 861,800 \$ 571,800 \$ 1,437,							
795,200 \$ 1,167,000 \$ 1,341,400 \$ 808,000 \$ 861,800 \$ 571,800 \$ 1,437,							
No.	\$ 795,200	, \$ 1,167,000	1,341,400	\$ 808,000	\$ 861,800	\$ 571,800	\$ 1,437,200
yes yes iii iii iii yes	10	yes	yes	no	no	no	yes
	10					no	Commercial

	Volum	e/Layout Assumptions						Unit Prices
Radius		12 m				Asphalt - Supply Install		\$ 400
Asphalt Lane Width		.3 m				Asphalt - Removal Full Depth		\$ 15
Gravel Shoulder		.2 m				Granulars		\$ 60
Storage Bay (unless otherwise)		15 m				Curb		\$ 120
Taper		Dual-side expansion 36:1, single side exp	ansion 15:1			Culvert (600mm)		\$ 800
Culvert Dia.		00 mm				Common Excavation		\$ 50
Asphalt Thickness		15 m				Topsoil (10cm depth)		\$ 10
Granulars Thickness		45 m				Hydroseed		\$ 5
andscaped Mound Height		.2 m				Borrow A		\$ 20
Granular Surrounding Curb	0.13	35 sq.m/m				Sidewalk		\$ 200
g						Concrete Island		\$ 240
						Clearing		\$ 80,000
						Traffic Control		\$ 30,000
						Guiderail		\$ 125
						Signage		\$ 10,000
						Light Standard/Signals		\$ 200,000
						Mobilization		\$ 30,000
						Traffic Control		\$ 70,000
						H&S Planning		\$ 5,000
						Construction Contingency		20%
						Engineering		18%
olumes/Areas		#22 - Trunk2 / New Connector		#23 - Hwy 102 / New Co	nnector W RB	#24 - Hwy 102 / New Connector E	RB	1600M CONNECTOR
sphalt	m ²		1,348	•	3,265		3,581	10,736
	tonne		475		1,151		1,262	3,784
anulars	m ²		1,719		6,248		6,672	14,646
araaro	m ³		863		2,870		3,067	6,591
urb (total length)	m		662		429		480	0,001
ulvert	m		002		420		400	
lewalk	m							
ncrete Island	m ²		371		201		211	
	m ²		706		706		706	
ndscaped Area (mound)								
	m ³		847		847		847	-
ndscaped Area (flat)	m ²		706					
ea to be Cleared	ha				3		3	1
iiderail	m				1,750		1,836	
gnage	ea		1		1		1	
gnals	ea				1		1	
e Fill	m ³				75,930	8	8,119	10,736
est								
phalt - Supply Install		\$		\$	460,365		4,921	
phalt - Removal Full Depth		\$	20,220	\$	48,975		3,715	
anulars		\$	51,775	\$	172,171			\$ 395,442
rb		\$	79,440	\$	51,480			-
lvert (600mm)		\$		\$		\$		\$ -
mmon Excavation		\$	43,146	\$	143,476		3,360	
osoil (10cm depth)		\$	14,120	\$	7,060		7,060	
roseed		\$	7,060	\$	3,530		3,530	
rrow A		\$	16,944	\$	1,535,544		9,324	
ncrete Island		\$	89,040	\$	48,240			-
lewalk		\$	-	\$	-	\$		\$ -
earing		\$	-	\$	200,000			\$ 80,000
ffic Control		\$	30,000	\$	30,000			\$ 30,000
de Rail		\$	-	\$	218,750		9,500	
nage		\$	10,000	\$			0,000	
ht Standards/Signals		\$	-	\$			0,000	
bilization		\$	30,000	\$			0,000	
ffic Control		\$	70,000		70,000		0,000	
S Planning		\$	5,000		5,000		5,000	
b Total		\$	657,000		3,235,000		3,000	
onstruction Contingency		\$	131,400		647,000		8,600	
ngineering Design		\$	119,000		583,000		7,000	
otal		\$	907,400	\$	4,465,000	\$ 4,95	8,600	\$ 3,906,000
lotes								
ower Pole Relocate		no		no		no		no
operty Acquistion		yes		yes		yes		yes

102732.001

Cost Estimate

Contractor Items

Contractor ite	ems					
Item #	Description	UOM	Quantity	Unit Price	Tot	tal
	NEBT1800 girder	ea	8	\$70,000.00	\$	560,000.00
	Deck concrete	m3	215.775	\$ 2,500.00	\$	539,437.50
	Barrier concrete	m3	46.5	\$ 2,500.00	\$	116,250.00
	Sidewalk	m3	11.25	\$ 2,500.00	\$	28,125.00
	Abutments	m3	82.2	\$ 2,500.00		205,500.00
	Wingwalls	m3	22.896	\$ 2,500.00		57,240.00
	Approach Slab	m3	34.2	\$ 2,500.00	\$	85,500.00
	Piers	m3	13.6	\$ 2,500.00	\$	33,929.20
	Pier Bent	m3	19.728	\$ 2,500.00	\$	33,929.20
	Spread footing	m3	49.32	\$ 2,500.00	\$	123,300.00
	Reinforcing	kg	117805	\$ 4.50		530,123.04
	Steel H-Piles	m	675	\$ 500.00		337,500.00
	wearing surface	t	115.5	\$ 50.00		5,775.00
	Waterproofing	m2	825	\$ 50.00	•	41,250.00
	Mobilization	LS	1	\$ 50,000.00	\$	50,000.00
	Sub-total				\$ 2	2,747,858.94
	20% for additional miscellaneaous				\$	549,571.79
	Sub-total				\$ 3	3,297,430.73
	20% contingency				\$	494,614.61
	Sub-total				\$ 3	3,792,045.33
	Engineering (8%)				\$	303,363.63
	Grand Total				\$ 4	4,095,408.96